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Chapter 4 ®
Intensionality in Mathematics Qs

Jaroslav Peregrin

Abstract Do mathematical expressions have intensions, or merely extensions?
If we accept the standard account of intensions based on possible worlds, it
would seem that the latter is the case — there is no room for nontrivial intensions
in the case of non-empirical expressions. However, some vexing mathematical
problems, notably Godel’s Second Incompleteness Theorem, seem to presuppose an
intensional construal of some mathematical expressions. Hence, can we make room
for intensions in mathematics? In this paper we argue that this is possible, provided
we give up the standard approach to intensionality based on possible worlds.

4.1 Which Sentence of PA Says that PA Is Inconsistent?

Suppose that my friend Charles is bald. Hence the sentence
(1) Charles is bald

is true. Suppose, moreover, that Charles happens to be the tallest bald man (in the
whole world, say). Hence the sentence

(2) The tallest bald man is bald

and (1) appear to “say the same thing”; namely, they ascribe baldness to Charles.
Yet while (1) appears to convey something nontrivial, (2) is trivial: it says that a bald
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58 J. Peregrin

man is bald, hence a truism.! How does this fact square with the intuition that the
two sentences “say the same”?

Quite easily, of course. The two sentences say the same only given the fact that
Charles is the tallest bald man, and this is an empirical fact which need not obtain.
Hence (1) and (2) say the same only on the assumption that

(3) Charles is the tallest bald man

It follows that the sense of “saying the same” just considered cannot be identical
with “meaning the same”, i.e. with synonymy. The point is that the meaning of (1)
and (2), and hence the identity or non-identity of their meanings, cannot depend on
empirical facts of the kind spelled out by (3). And if (1) and (2) were to mean the
same thing, then in a case where (3) were false they could not cease to mean the
same thing (though there would be a sense in which they would no longer say the
same).

Now consider a prima facie similar case. Suppose that some formal theory, say
Peano arithmetic (PA), is consistent, hence the sentence

(1*) PA is consistent
is true. It follows that PA is the biggest consistent theory included in PA, hence that
(2*) The biggest consistent theory included in PA is consistent

Just as in the previous case, the two sentences appear, on the one hand, to “say the
same”’; namely, they ascribe consistency to PA while not being, on the other hand,
really synonymous. But why are they not really synonymous? We might be tempted
to give an answer wholly analogous to the previous case, namely that (1*) and (2*)
“saying the same” is conditioned by

(3*) PA is the biggest consistent theory included in PA,

which is an empirical fact that need not obtain. But this would not work here: (3*) is
not an empirical fact and it cannot fail to obtain. If PA is consistent, there cannot be
a situation in which it would fail to be identical with the biggest consistent theory
included in PA.

Is it then the case that (1*) and (2%), unlike (1) and (2), do have the same
meaning?

We may tend to say that this perhaps is not a question worth dwelling on. In a
sense, (1*) and (2*) do mean the same thing, while perhaps in another sense they do
not. But this cavalier approach would lead us into some difficulties, not the smallest
of them being that the answer to the synonymy question is presupposed by one
of the most significant findings in logic of the twentieth century, Godel’s Second
Incompleteness Theorem.

As pointed out by Auerbach (1985), while the First Incompleteness Theorem is
a plain statement regarding the structure of certain formal systems (if the axioms of

Twell, perhaps it says, over and above this, that there is one and only one tallest bald man; however,
this again does not seem to be too nontrivial.
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4 Intensionality in Mathematics 59

such a system include a modicum of arithmetic, then there is bound to be a sentence
which is independent of them), the nature of the Second Theorem is different — it
presupposes that certain arithmetical sentences have certain meanings. (Therefore,
Feferman 1960 takes it to be an intensional problem.?) The Second Incompleteness
Theorem says that no system of the above kind proves a theorem that says of the
system that it is consistent. Hence, the very formulation of the Theorem assumes
that we know what it takes for a sentence of the system to say (mean?) that the
system is consistent.

At first sight, it might seem that this is not a problem and that we do not need to
enter the muddy waters of the considerations displayed above. To say that a system
is consistent is to say that it does not prove the absurdity (often, the sentence “0=1"
is used as its embodiment), or that there is something which it does not prove. Hence
everything we need is the provability predicate, which, in turn, is based on the binary
predicate Prf that relates two numbers iff the first is the Godel number of a proof of
a theorem whose Godel number is the second argument.

Thus it might seem that a sentence’s saying that the system is consistent can be
reduced to it being of the form — 3 xPrf(x, o= 11), where Prf(x, y) says that x is
(the Godel number of) a proof of (the Godel number of) y. And Prf(x, y)’s saying
this in turn reduces to its relating all and only numbers of proofs with numbers of
theorems they are proofs of. But this unfortunately is not the case, and we are led
directly into the muddy waters that we hoped to avoid.

Consider the binary predicate Prfgr defined in the following way (it was, in effect,
proposed by Rosser 1936):

Prfr(x, y) = pey. x is a proof of y and x is not greater than the number of any proof of any
negation of y.

Given PA is consistent, the existence of a proof of y excludes the existence of a
proof of its negation, and hence the number of a proof of y can never be greater than
the number of a proof of its negation; hence Prfr(x, y) iff Prf(x, y). It follows that in
so far as saying that x is (the Godel number of) a proof of (the Godel number of) y
amounts to nothing more than relating all and only numbers of proofs with numbers
of theorems they are proofs of, Prfr(x, y) says this just as Prf(x, y) does. But the
trouble is that if we substitute Prfr for Prf in the consistency sentence, we get a
sentence that is provable.3 Hence, either Godel’s Second Incompleteness Theorem
does not hold, or Prfr(x, ¥) does not say that x is a proof of y after all. And, as the

2 A thorough discussion of the ways in which the Second Incompleteness Theorem is intensional
is given by Halbach and Visser (2014a,b).

3This is quite obvious if, instead of Prfr, we use still another predicate, namely Prfc(x, y) = per.
Prf(x, y) A =Prf(x, [0=11). Given Prf(x, [0=11) for no x, Prfc(x, y) holds for the same x’s and
y’s as Prf (x, y); while = 3xPrfc(x, [0=11) is =3 x(Prf(x, [0=17) A =Prf(x, [0=11)), which is
obviously provable. In fact, if we consider a further modified version of Prfc(x, y), Prfc(x, y)
= pef. Pri(x, y) A Vx —Prf(x, lo=11), we may return to our example (1*) vs. (2¥), for we may
think of (1*) as roughly capturing the sense of the standard consistency sentence based on the
predicate Prf, and of (2*) as capturing that of its variant based on Prf — for ¥ x —Prf(x, [0=11)
clearly amounts to the consistency of PA. (Cf. Auerbach 1992).
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60 J. Peregrin

Second Theorem would be taken as a well-established fact, we seem to be back to
pondering what does it take for an expression of a formal system to say something.*

4.2 Possible Worlds

Let us return to sentences (1) and (2). The fact that there is a sense in which they
do “say the same” and a sense in which they do not is clear, and by now it has a
standard explanation: they do “say the same” on the level of reference, while they
do not “say the same” on the level of meaning. The fact that semantics must consist
of two levels, such as meaning and reference, now an established commonplace, was
most clearly articulated by Frege (1892a); and since his seminal analyses, almost no
theory of semantics has avoided a stratification of this kind.

Why do we need the two levels? An answer follows from a consideration of
what it is that language is good for. On the one hand, we certainly need language
for talking about objects that are around us: the chair on which I am sitting, my
computer, my friend Charles, the current president of the USA, etc. On the other
hand, we need language to be very general and universal — its semantics should not
depend on there being my computer or my friend Charles. Doing justice to both
these requirements works in such a way that linguistic expressions have general
meanings, which conspire together with the empirical facts to produce referents.
Thus, the expression the current president of the USA has a general meaning,
independent of the actual possessor of this office, but given the current state of the
USA, it is able to refer to a concrete person.

Frege famously called the two levels of semantics the level of Sinn (sense) and
that of Bedeutung (meaning) — a not very happy choice, for it is his Sinn, rather
than his Bedeutung, that corresponds to meaning in the intuitive sense of the word.
From this viewpoint, it was helpful when Carnap (1947) proposed altering the
terminology and rechristened Frege’s Sinne as intensions and his Bedeutungen as
extensions. This is the terminology that has become standard and which lets us say
that sentences (1) and (2), and especially their subjects, Charles and the tallest bald
man, share the same extension while they differ in intension.

How best to get an explicitly semantic grip on the difference between intension
and extension was foreshadowed already by Carnap, but came to full fruition only
after Kripke (1963a,b, 1965) introduced his semantics for modal logic based on the
notion of possible world. The basic idea of so-called intensional semantics® that
grew from the Carnapian considerations regarding the nature of intensions and the

4We may think about a “non-intensional” content of the Second Incompleteness Theorem: for
example we may take it as saying that we cannot prove Pr('0=1') for any predicate Pr fulfilling
Lob’s derivability conditions (Lob 1955; cf. also the thorough discussion of Boolos 1995). But then
the question is why this result should be very interesting; unless we show that there is a reason to
think that fulfilling L6b’s conditions amounts to being the provability predicate, it is a far cry from
what is usually taken as the Second Incompleteness Theorem (see Detlefsen 1986).

SPut forward by Montague (1974) and others.

peregrin@flu.cas.cz



4 Intensionality in Mathematics 61

apparatus of possible worlds was that the intension may be seen as something like
an extension relativized to possible worlds; more technically, it can be considered
as a function mapping possible worlds on corresponding extensions.® Hence, while
the extension of the tallest bald man is (presumably) a concrete person (my friend
Charles), its intension is a function that maps any possible world on its tallest bald
man (if any).

Let me call the result of this development the possible-worlds account for
intensionality, or PWAI, for short. To many philosophers it appeared to be the
ultimate solution to the problem of intensionality. However, it is usually taken to
have no impact on mathematics. The facts of mathematics, it is usually assumed,
are independent of the way the world is, hence they are constant across possible
worlds and if we therefore assign intensions to mathematical sentences they will be
constant functions mapping every possible world on one of the truth values.

Hence, given PWALI, there is no space for intensionality in mathematics. Ac-
cording to PWALI, all true mathematical sentences have the same intension and so
do all the false ones. (This was also behind the most spectacular failures of the
accounts for the so called propositional attitude reports provided by PWAI — see
Bigelow 1978 or Partee 1982.) Some semanticists proposed that semantics must go
“hyperintensional” (see, e.g., Lewis 1972 or Cresswell 1975).

Most working mathematicians do not seem to care — after all, when doing
mathematics and using its language there is no need to poke into the details of its
semantics. It is clear that for many mathematical expressions, such as e.g. “1+4-3” and
“24-2”, though they have the same extension (in this case the number 4) and from
the viewpoint of PWAI also the same intension (namely the function mapping every
possible world on the number 4), they do not have, intuitively, the same meaning;
but it is not clear that mathematicians (in contrast to philosophers of language) need
to rack their brains over this apparent clash with everyday intuition. However, we
have seen that some problems, such as the Second Incompleteness Theorems, which
are often understood as eminently mathematical, do presuppose a clarification of
meaning far beyond simple intuition.

4.3 Consequence and Meaning

From the viewpoint of PWAI, mathematical discourse is anomalous in that it lacks
the extension/intension distinction, which appears to be vital for non-mathematical
discourse. Let us consider the ways in which this anomaly influences the concept of
consequence and then the very concept of meaning.

What is consequence? We can say that

(4) Fido is an animal

This is an oversimplification; technically, the systems of intensional logic tend to be somewhat
more complicated. See Peregrin (2006).
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62 J. Peregrin

is a consequence of

(5) Fidois adog

and similarly we can say that
(4*) L has the smallest element
is a consequence of

(5*%) Lis alattice.

What, in general, does it take for a sentence to be a consequence of other sentences?

Intuitively, A is a consequence of Ay, ..., A, iff the truth of Ay, ..., A, “forces”
the truth of A, i.e. if the latter is true whenever the former are true. The “whenever”
just employed indicates that this definition contains a tacit quantification: A is true
in all cases when Ay, ..., A, are — but what are the cases over which we quantify?
For (4) and (5), the cases would seem to be the possible states of the world (which
may be captured by Kripkean possible worlds): all states in which Fido is a dog are
bound to be states in which Fido is an animal (while in other states this need not
be the case). However, this does not work for (4*) and (5%), for if L is a lattice, it
remains a lattice whichever state of the world obtains.

Let me stress that just like the case of Fido in (4) and (5), L in (4*) and (5%)
is supposed to be the name of a specific object (not just a kind of variable), for
(4*) and (5%), like (4) and (5), are supposed to be sentences, not just schemata. But
could we not use the Tarskian definition of consequence, which, in effect, reduces
the consequence among sentences to consequence among the corresponding logical
forms (where the latter obtains iff everything that is the model of the premises is
also a model of the conclusion)?

Not really. The fact that (5*) follows from (4*), obviously, is not a matter of
their logical forms, it is a matter of the fact that lattices are bound to have smallest
elements. But could we not say that (4*)’s being a consequence of (5*) amounts to
the quantificational statement

(6%) for every x, if x is a lattice, then x has the smallest element?
This is also problematic. For consider the analogue for the case of (4) and (5).
(6) for every x, if x is a dog, then x is an animal.

It is true; but it would not be generally held that its truth would guarantee the
consequence. Consider the sentence

(7) for every x, if x is a featherless biped, then x is a human.

This is also true, but it certainly does not follow that Charles is a human is a
consequence of Charles is a featherless biped. The reason is that the truth of (7)
is contingent; in terms of PWAI we can say that though it is true in the actual world,
it is not true in every possible world.

Hence we can see that a conditional of this kind guarantees consequence again
only if it is true not only about the actual world, but across possible worlds. Does
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4 Intensionality in Mathematics 63

this hold of (6*%)? Yes, but somewhat vacuously, for a mathematical sentence is
true in every possible world as soon as it is true in the actual one. It follows that
consequence in mathematics, if considered in this standard way, boils down to
material implication; hence it also suffers from all the well-known maladies of this
kind of implication.’

Maybe this is something we should simply accept. But what about meaning?
Similar arguments indicate that furnishing an expression with an extension is
insufficient for making it genuinely meaningful.

Suppose we stipulate that a word refers to the set of current humans. What have
we thus made the word mean? Human? Or featherless biped? These are definitely
two different meanings, hence our new term has to mean one or the other (or still
something else). The answer is that in this way we do not make it mean anything,
for conferring extension is notoriously short of conferring meaning. To make a word
meaningful, we need to furnish it with an intension. Now how is it with meanings
of mathematical expressions?

Mathematical expressions, of course, may be thought of as having intensions,
but then the only intensions available are those that are constant over possible
worlds and hence are uniquely determined by extensions (and hence are somewhat
superfluous). Thus to furnish a mathematical expression with an extension is to
furnish it with an intension, albeit trivially. However, this would mean that, e.g., the
expressions PA and the biggest consistent part of PA mean the same thing, which
does not seem to be viable.

One possible approach to this situation is to revise the concept of possible world
on which we base the PWAI. A proposal, going back to Hintikka (1975), is to
consider not only worlds that are “ontologically” possible, but also worlds that
are “epistemologically” possible (though they are ontologically impossible). This
means that, for example, in a situation where there is no proof of the consistency of
PA, there is an (impossible) possible world in which PA is not consistent.

It seems to me that this proposal is on the right track — as far as the semantics
of possible-worlds goes. An obvious objection, however, is that there is no way
of determining what is epistemologically possible. Is it what any speaker of the
language in question can hold for true? But would the ignorance and/or folly of
some speakers stop short of anything — would there be anything that would be at all
impossible?

Perhaps we can resort to a whole society as a measure of epistemic possibility.
Perhaps something is epistemically possible iff the contrary has not been “ascer-
tained” (proved, in the case of mathematics) by the community. According to this
proposal, our community no longer allows for an (epistemologically) possible world
in which Fermat’s Last Theorem would not hold, but it does allow for one in which
the Goldbach conjecture does not hold. But this would mean that there is also no
world in which PA is inconsistent (at least if we do not want to challenge the existing
proofs of its consistency) and PA would come out again as co-intensional with the
biggest consistent part of PA.

7See Peregrin (2014, Chapter 7).
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64 J. Peregrin
4.4 Back to Frege

Frege’s approach to intensionality differs from that of his continuator Carnap in
at least two respects. Frege’s Sinn, “intension”, is a way of givenness (Art des
Gegebensein; see Frege 1892a) (and this is pretty much everything Frege tells us
about it). And, intuitively, it would seem that specifying PA by way of PA and
specifying it by way of the biggest consistent part of PA are two different ways.

But, of course, we must not assume that two nominally different phrases always
mean different ways of givenness — not all different expressions need to mean
different things (independently of which particular theory of meaning we subscribe
to). And possible worlds appear to offer us precisely a criterion of determining
when two individual descriptions are semantically different and when not: they are
different if there is a possible world in which they do not describe the same entity. Is
it possible that the biggest consistent part of PA does not describe PA? Not according
to PWAL

Frege’s opinion was arguably different. For what he gives as one of his pivot
examples of different ways of giving the same object is the following:

Leta, b, c be the lines connecting the vertices of a triangle with the midpoints of the opposite

sides. The point of intersection of @ and b is then the same as the point of intersection of

b and c. So we have different designations for the same point, and these names (‘point of

intersection of a and b,” ‘point of intersection of b and ¢’) likewise indicate the mode of
presentation; and hence the statement contains actual knowledge. (Frege 1892b, p. 26)

As it is clear that the point of intersection remains the same however we vary the
world, the two descriptions have the same intension (on the standard construal of
possible worlds) — from this viewpoint they therefore do not appear as different
descriptions. Hence Frege thought that two descriptions can be semantically
different even if they are (according to PWAI) co-intensional.

Let us consider the idea underlying PWAI. To have, aside an extension, also an
intension is to have an extension not only now, but also in various counterfactual
situations — to be, as it were, “counterfactually robust”. Perhaps we need not be sure
what the extension of the term might be in some very exotic circumstances (what
would be the extension of hAuman in a world with many more or less humanoid
species?), but to understand the word is to know at least how its extension moves
when the circumstances shift from the current ones into their neighborhood.

Of course, if we consider changes of circumstances, we must concentrate on
the way the changes affect the object or objects that constitute the extension in
question — to know, that is, the rules that regulate the movements. Unless the object
is affected, the change is not really relevant. Hence considering counterfactual
circumstances is, in effect, considering variants of the object or objects in question
and considering which of the variants still count as “the same” object or “the same”
kind of objects. And this depends on what we are, and what we are not, willing to
consider “the same”.

PWAL is based on the notion of “ontological possibility”’, which is taken to be an
objective matter, wholly independent of us. (In this way, the standard treatment is
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4 Intensionality in Mathematics 65

usually not only supposed to account for meaning but also to explain it, to reduce it
to something non-semantic.) The above considerations indicate that this is doubtful.
Why is it that the sentence Fido is a dog and is not a dog cannot be true? Because
there is no possible world in which it is true? But how do we know, have we checked
all the possible worlds, one by one? We know it because we know (explicitly or
implicitly) the rules of our language (in this particular case the rules governing not),
and we know the truth is excluded by these rules. Thus we do not know that the
sentence is necessarily false because it is false in every possible world; rather, we
know that it is necessarily false, because this follows from the rules of our language
that we mastered on learning it, and we therefore know that there cannot be a world
in which the sentence is true. Hence, possible worlds are a certain (useful) means of
envisaging certain rules of our language, not something that would explain why the
rules are such as they are.®

Take (1). It would be taken as a prototype of a contingent, empirical sentence —
hence a sentence that is not true in every possible world. But why is this? Clearly
it depends on what kind of entity we consider the individual Charles to be. When 1
point at Charles, I point at an intricately complex configuration of molecules making
up an entity with a lot of physical features, including a bald head — and precisely
this particular configuration cannot lack the bald head, for it would be a different
entity if it did. The fact that we take (1) to be contingent is because we individuate
individuals more loosely than the individual configurations of molecules — many
more or less different configurations of this kind may count as the same individual.
(Though what is and what is not the same individual is not always clear; and it is
much more unclear in cases of things other than animals — viz. the celebrated case
of the ship of Theseus.) Hence, saying that what is and is not contingent is clearly
determined by “ontology” is a huge exaggeration.

The situation is not very different in the case of extension for general terms,
such as, e.g., human. How much can the extension of the class of current humans
vary while still remaining the class of humans? In contrast to the extension of
an individual term, such as Charles, here we must take into account not only the
variations of the extension itself, but also those of the world around it. It is clear that
the extension may gain a lot of kinds of individuals in many ways differing from the
current ones; and it can lose any of the current ones (if they are no longer part of the
world). It is also clear that gaining individuals differing in more substantial ways
(e.g. not having brains) might compromise the status of the set as the set of humans;
as well as losing some current individuals (if they still are part of the world). Thus,
though the boundaries of the species human are far from clear-cut, there are many
features that obviously do not move an individual outside the boundaries and there
are many such that do. And to understand the term Auman is to understand these.

Note also that we need not be able to see all the conditions that shape the
boundaries of the extensions. Imagine a kind of unobvious bodily feature X without
which one cannot have a brain. Thus, insofar as we would hardly take a brain-less

81 discussed this in great detail in Peregrin (1995).
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66 J. Peregrin

organism to be human, the lack of X would prevent an individual from being a
member of the corresponding extension, though we need not know about this lack.
In general, this is a matter of the fact that we need not see all the consequences
of the rules of our language. It follows that we may consider a class of organisms
containing some X-less ones as admissible classes of humans.

In fact, the claim that humans have X would belong to what Kripke (1972) calls
the “necessary a posteriori”. (While Kant famously urged that there are not only
analytic a priori and synthetic a posteriori judgments, but also synthetic a priori
ones, Kripke argues that we can have, the other way around, analytic a posteriori
judgments.) The criteria constitutive of a meaning of a term may have consequences
we are not able to see, and hence there are properties which anything falling under
the term must have in force of the meaning the term (and hence the claim that it has
the property is analytic); though to find out about them might be a discovery (thus
the claim is a posteriori).

The important point is that this holds both for empirical and mathematical terms.
Our normal usage of the name “PA” is such that their bearer gets individuated in
terms of the axioms constitutive of it. We certainly intend to refer to the unique
system determined by the axioms with all its properties, but in the case of us not
knowing all the properties, or in the case of not all the properties being obvious,
the meaning of “PA”, as embodied in its use, does not exclude some variants of the
intended reference. (Unlike reference, the meaning is something we know when we
understand an expression. Thus, what is contingent — in the sense of Kripkean a
posteriori — cannot be part of the meaning.) Note that if this were not the case, the
meaning of “PA” would be unknown also to many of those who would know the
axioms of the system perfectly well, which would seem to be strange.

Perhaps, then, we can see (1*) as contingent, for it is a posteriori in the Kripkean
sense. If PA were slightly different from what it is, it would not need to be consistent;
and the slight difference would not make us say it is no longer PA (because we need
not be able to see all its consequences). Then we could say that just as the fact that
Charles is bald is contingent because we can imagine something non-bald and close
to the current configuration of molecules making up Charles (enough so that we are
content to call it “the same individual™), the fact that PA is consistent is contingent
because we can imagine something inconsistent and close to PA in a strict enough
sense that we are content with calling it “the same system”.

This opens up a novel view of intensionality. Entities of the actual world may
have “neighborhoods” consisting of entities more or less similar to them that are
considered to be “identical with them”. The configuration of molecules called at
this moment Charles continues to be the same Charles even if it undergoes various
kinds of changes. The set of humans of the actual world, which is the extension
of human, remains a set of humans even after some of its members are removed
and new members — of the appropriate kind — are added. And PA remains the same
system providing we tamper with it only in ways which we see as not threatening
its identity.
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4 Intensionality in Mathematics 67
4.5 Intension as “Robustness”

What is important is that to know the intension of a term is to know in which
directions its extension can be moved without ceasing to be the extension, and
in which directions this is not possible. Consider the conglomerate of molecules
constituting the current Charles. There are many changes that can happen in this
entity that do not cause it to no longer be Charles. Indeed, almost any minor change
is insubstantial; only an entity substantially different from the current one may not
count as Charles. (Though even an entity very radically different from the current
Charles may still count as Charles if it results from certain transformations of the
current Charles — the criteria of what still counts as Charles and what no longer does
are quite complicated and not always unequivocal.)

Thus, we may exploit the wisdom behind PWALI in a slightly different way than
PWAL itself does: we can say that an expression is furnished not only with extension,
but also with intension if it is determined to what extent it is “robust” — how various
kinds of changes of the status quo tamper with its extension, especially which kinds
of variants of the current extension are prone to take over its role. And, in contrast
to PWALI, this alternative view of intensionality may also be usable in the realm of
mathematics.

Consider the binary relation that links [ x | with [y T iff x is a proof of y. It is
clear that if a (number of a) proof plus a (number of a) sentence are in this relation
w.r.t. a given axiomatic system, this cannot be changed by adding more axioms to
the system (nor, for that matter, to another one). The only thing that can result from
the extension of the list of axioms is that more numbers will be in this relation.
Hence if we consider the relation links [ x 1 with [ y 1 iff x is a proof of y and PA
is consistent, we can see that it behaves differently — adding axioms to PA so that it
becomes inconsistent exempts any sentences from this relation. (The same holds for
the more complicated version x is a proof of y and there is no proof z of a negation
of vy such that z< x).

Now given an axiomatic system, the claim there is something that is not derivable
from the empty set of premises, if false, can be made true by subtracting axioms, but
not by adding more of them to the system (and certainly not to PA, if PA is not
the system under consideration); whereas if we used x is a proof of y and PA is
consistent instead of x is a proof of y, this would not be the case. Hence if we
defined is consistent as there is something that is not derivable from an empty set of
premises, it is ok for the former derivability predicate, but not for the latter one.

If we thus accept that a necessary condition for a term having an intension is its
“determinateness” in the vicinity of its actual extension (in the sense that it is clear
which variants of the current extension still are its potential extensions, and which
not), we have a criterion for deciding which predicates are reasonable candidates
for expressing the property of consistency (and similarly for other mathematical
terms). The criterion is not sharp and its applicability is limited; however, it brings
forth a possible way of explicating the intuition that mathematical terms also have
intensions.
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Now let us return to the statement
(1*) PA is consistent

Does it hold necessarily? Consider the statement (where X is still a feature an
organism must have to have a brain and such that a normal speaker is not likely
to know about it):

(1**) Charles has X.

Does it hold necessarily? Yes, it does, in the sense that without X Charles would
not be what we are normally willing to call a human being, and hence a fortiori
would not be Charles. However, this is a piece of empirical knowledge (based on
the assumption that the biological theory conditioning having a brain, and hence
being human, by having X holds) — it is not a matter of the rules of our language.
To fail to know that Charles has X (which, we assumed, a normal speaker does) is
not to fail to understand the term Auman or the name Charles, it is to fail to know
something about humans and especially about Charles.

Similarly (1*) does hold necessarily, for we know that the lack of consistency
would be possible only when PA were a different theory. Unlike the case of X and
Charles, this is not empirical knowledge, but just like in this case it is conditioned
by the fact that there are no errors in the proofs of the consistency of PA. (What if
all the proofs of the consistency of PA presented so far are in fact erroneous, it is
only that we have missed the errors? This is, needless to say, very improbable, but
certainly neither impossible in some metaphysical way, nor excluded by the rules of
our language.) Hence we can say though (1%*), in contrast to (1**), does not amount
to empirical knowledge, it does amount, in accordance with (1**), to knowledge
that is a posteriori in the Kripkean sense.

In contrast to this, there is no such possibility for (2*). However we vary PA, it
not only cannot be the case that its biggest consistent part would not be consistent,
but also it cannot be the case that we would have to discover that it is consistent.
This, I think, accounts for both the intuitive distinction between (1*) and (2*) and
the intuitive parallel between (1) and (2), on the one hand, and (1*) and (2*), on
the other — both pairs get equated only via an additional nontrivial fact that is a
posteriori, though in the first case in the ordinary synthetic a posteriori sense (the
fact is simply empirical), while in the second case in the sense of the Kripkean
necessary a posteriori.

4.6 Conclusion

Where does this bring us w.r.t. intensionality and meaning in mathematics? I think
that what is clear is that the fact that to have a genuine meaning is to have an
intension holds for mathematical expressions just as for empirical ones. However,
to make sense of the concept of intension as applied to mathematical expressions
we must disregard the almost universal acceptance of PWAI and slightly alter our
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understanding of it. I think that, roughly, an expression has an intension iff it does
not only have an extension,” but if there are rules determining which changes of
the extension are admissible so that it still counts as the same extension, and which
changes would move us beyond this border.

Take (1%), i.e. the sentence PA is consistent: I do not think that anyone accepting
it would be taken as not knowing what PA means. If you know the axioms of PA,
but do not know about the consistency proofs, you would hardly be considered as
not knowing what PA is, you would most probably be considered as merely missing
something about PA. This seems to me to indicate that the rules of our language, by
themselves, do not exclude the inconsistency of PA — at least they do not exclude it
in the way in which the rules governing not exclude the truth of Fido is a dog and
Fido is not a dog.

One of the morals to be drawn from this is that though the idea of epistemologi-
cally possible, but ontologically impossible, possible worlds is not wrong, we should
not take possible worlds as the ultimate unexplained explainers. The ultimate level
of explanation is the level of the rules of language. The sentence Fido is a dog and
is not a dog is necessarily true because whoever would accept it would be deemed
an incompetent speaker of English, in particular not knowing what not means.

Does this attitude towards meaning not lead us to an excessively fuzzy notion of
meaning? If meaning is a matter of the rules of usage, the boundary of which can
never be clearly specified, does it not mean that our theory of meaning goes awry?
Not really — it is the meaning itself, not our theory of it that is to blame. We should
become reconciled to the fact that meaning is not an object with sharp boundaries,
but rather a role conferred on an expression by an often vague cluster of rules (as
Wittgenstein, Quine, and Sellars all taught us.lo)

This, however, does not imply a humptydumptyism according to which expres-
sions can mean whatever anybody wants them to mean. There are clear arguments
distinguishing predicates that do mean consistent from co-extensional predicates
that do not. They probably do not allow us to delimit the former ones quite
sharply; hence they may not clear all the puzzles of the ‘intensional’ problems
of mathematics, such as the Second Incompleteness Theorem. However, they
do allow us to gain a much clearer view of their nature than when we ignore
the intensionality of mathematical expressions or when we settle for its trivial
theory.

Acknowledgements Work on this paper was supported by Grant No. 17-156458S of the Czech
Science Foundation.

9To be sure, there may be expressions, especially definite descriptions, that have an intension but do
not have an extension — in the case of mathematical expressions an example might be the greatest
prime. But this is because they are composed out of meaningful subexpressions in such a way that
they are themselves meaningful, though they do not pick up any extension.

10gee Peregrin (2014).
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