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ABSTRACT
It is a trivial fact that if we have a square table filled with numbers, we can always
form a column which is not yet contained in the table. Despite its apparent triviality,
this fact can lead us the most of the path-breaking results of logic in the second half
of the nineteenth and the first half of the twentieth century. We explain how this fact
can be used to show that there are more sequences of natural numbers than there are
natural numbers, that there are more real numbers than natural numbers and that
every set has more subsets than elements (all results due to Cantor); we indicate how
this fact can be seen as underlying the celebrated Russell’s paradox; andwe show how
it can be employed to expose the most fundamental result of mathematical logic of
the twentieth century, Gödel’s incompleteness theorem. Finally, we show how this
fact yields the unsolvability of the halting problem for Turing machines.
Keywords: diagonalization, cardinality, Russell’s paradox, incompleteness of arith-
metic, halting problem

1. General formulation

Imagine a square table populated by natural numbers.

5 0 3
1 1 3
3 7 3

Is it possible to add a column that the table does not yet contain? There are, of course,
many such columns that could be added. Now suppose that the table is populated only
by zeros and ones.

0 0 1
1 1 0
1 0 0
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Is it still possible to add a new column? Of course, it is – for example 0, 0, 0; or 1,
1, 1. Now suppose that the table is very large. Can we still do the same? It seems that the
answer must still be positive, though now it might be not so easy to find a new column.
Here is an easy method: make the first number of the new column different from that
in the first row of the first column of the original table, make the second number in the
new column different from that in the second row of the second column, etc. Hence, the
number in the nth row of the new column is different from that in the nth row of the nth
column and the new column is thus different from each column of the original table.

0 0 1 1
1 1 0 0
1 0 0 1

We can call this method diagonalization, and we can call the column produced by diago-
nalization the antidiagonal of the table (wewill abreviate it to AD). Note that we can speak
about the antidiagonal only thanks to the fact that the table we talk about cannot contain
more than two numbers (0 and 1 in our case). If the values in the table were allowed to be
drawn from a set consisting of more than two elements, there would be many antidiag-
onals. Note also that the presupposition of the application of diagonalization is that the
table is square, i.e. that the number of rows of the original table equals the number of its
columns.

Simple as this method may seem to be, it lays the foundation of many path-breaking
results of logic in the second half of the nineteenth and the first half of twentieth century.1
Let us assume that each row in a table we are considering has a label and let us use the
sign D for the set of all the labels. Each column of the table can then be considered as
a function mapping D (in our introductory examples D could be {1,2,3}, for the tables
have three rows) on a set R of those values that can occur within the table (in our first
example, R may be {0,1,3,5,7} (or any set containing it), in the second one it would be
{0,1}).

f1 f2 f3 f4 f5 ...
d1 f1(d1) f2(d1) f3(d1) f4(d1) f5(d1) ...
d2 f1(d2) f2(d2) f3(d2) f4(d2) f5(d2) ...
d3 f1(d3) f2(d3) f3(d3) f4(d3) f5(d3) ...
d4 f1(d4) f2(d4) f3(d4) f4(d4) f5(d4) ...
d5 f1(d5) f2(d5) f3(d5) f4(d5) f5(d5) ...
... ... ... ... ... ... ...

1 In this paper we concentrate at the most perspicuous presentation of the diagonal argument. For more
detailed, deeper and more technical accounts see Smullyan [1994], Boolos et al. [2002], or Gaifman [2006].
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The table thus presents a set F of functions fromD toR, such that the number of elements
of F coincides with that of D (the table is square); and the diagonal method shows that
there is a function from D to R which does not belong to F:
Theorem. Let F be a set of functions with the domain D and range R. Let R consist of
at least two elements. Then, if the cardinality of F is the same as that of D, there exists a
function from D to R which is not an element of F.
Proof: Let i be a one-one mapping of D on F. Let f be such that f(x) ≠ fx(x), where fx =
i(x), for every x from D. Then f is – obviously – not an element of F.
This formulation allows us to extend our considerations to infinite “tables” – even to “ta-
bles” with a non-denumerable number of rows and columns. But by saying this we make
our exposition basically a-historical, for diagonalization was first used to prove the very
existence of non-denumerable cardinalities.

2. Cardinality issues

A straightforward application of diagonalization shows that however we order infinite
sequences of natural numbers into a succession, the succession will not contain all the
sequences.

1 2 3 4 5 ... AD
1 5 0 3 8 4 ... 1
2 1 1 3 3 6 ... 2
3 3 7 3 7 7 ... 1
4 4 4 4 1 1 ... 2
5 9 6 7 3 2 ... 1
... ... ... ... ... ... ... ...

This is usually interpreted in such away that there aremore sequences of natural numbers
than there are natural numbers; hence, that there is an infinity greater than the infinity of
natural numbers.2 Note that this result keeps holding even if we only consider sequences
of some restricted subset of natural numbers, such as {0,1,2,3,4,5,6,7,8,9} or indeed {0,1}.

Now consider real numbers between zero and one, i.e. numbers of the shape
0,x1x2x3 ..., where x1, x2, x3 ... is an infinite sequence of one-digit numerals. Each such
number can therefore be identified with an infinite sequence of natural numbers;3 it fol-
lows that there are more real numbers than natural numbers. The acceptance of this view
by Cantor [1874] marked a break in the foundations of mathematics.

2 Though this is nowadays an almost universally accepted interpretation, it is perhaps not quite inevitable –we
might for example insist that the reason that we are not able to order all the sequences in a single succession
is not a matter of their number, but rather of some peculiarities of the ordering procedure.

3 In fact, with some trivial exceptions: a real number of the shape 0,x1x2x3...xn999... (with no other digit than
9 thereafter) is considered to be the same as 0,x1x2x3...x′

n000... (with zeros thereafter), where x′
n=xn+1. But

it is easy to show that these exceptions are not relevant.
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Still more generally, take the labels of rows to be elements of an arbitrary set S and
the columns of the table as the characteristic functions of its subsets: i.e. every column
represents that subset of S which consists of those elements of S to which it assigns the
value 1. If S = {e1, e2, e3, ...} andwe denote its subsets as s1, s2, s3, ..., we have the following
table:

S s1 s2 s3 s4 s5 ... AD
e1 0 1 1 0 1 ... 1
e2 0 0 1 0 0 ... 1
e3 0 0 1 0 1 ... 0
e4 0 0 0 1 0 ... 0
e5 0 0 0 1 1 ... 0
... ... ... ... ... ... ... ...

Here diagonalization shows us that there are more subsets of any set than the elements
of the set. These results are connected with the birth of set theory and especially, again,
with the research of Cantor [1890].

3. Paradoxes

Suppose we have all the properties that there are (being black, being a fish, being a
color, being a property, ... ). Denote them as p1, p2, p3, ... . Make them the labels of both
rows and columns of a table and fill the cell in the intersection of the ith row with the jth
column with 1 iff the ith property has the jth property (hence if, e.g., being black is a color,
or if being a property is a fish) and with 0 otherwise; and construct the antidiagonal.

p1 p2 p3 p4 p5 ... p*
p1 0 1 1 0 1 ... 1
p2 0 0 1 0 0 ... 1
p3 0 0 1 0 1 ... 0
p4 0 0 0 1 0 ... 0
p5 0 0 0 1 1 ... 0
... ... ... ... ... ... ... ...

Now the antidiagonal contains 1 in its ith row iff pi does not have itself; hence, it corre-
sponds to a property p* that maps every property on 1 iff the property does not have itself.
In this sense, p* would seem to be the property of not having itself. And as this indeed
appears to be a property and as we assumed that the table contained all the properties
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that there are, p* must be identical with pj for some j. Then, however, the jth element of
the diagonal is the jth element of both the column pj and the column p*. In other words,
it is pj(pj) and at the same time it is ¬pj(pj). Thus, pj(pj) is true iff it is false. This is the
celebrated paradox of Russell [1908].

What tomake of it? One interpretation of this fact is that not having itself only seems to
be a property, but in fact it is not. For how could it be a property if it cannot be a member
of any set of properties? Another interpretation is that there is such a property and that
hence there are real inconsistencies plaguing natural language4 and that the role of logic
is to establish artificial languages gerrymandered in such a way that no inconsistencies
are let into them. Hence, let us now turn to the case when p1, p2, p3, ... are all properties
that are expressible in terms of a fixed language.

4. Incompleteness of arithmetic

Let now p1, p2, p3, ... be not properties, but formulas of the language of Peano arith-
metic (PA), each of which contains exactly one free variable. We will call such formulas
pseudopredicates; they can clearly be considered as expressing (numerical) properties.
In particular, every such formula is true of some numbers and false for others and ex-
presses the property which a number has iff the formula is true of it. Thus, for example,
the formula x>5 expresses the property of being bigger than five, whereas the formula
∃y (x = 2.y) expresses the property of being even. If we denote this last formula as p, we
shall denote by p(1),p(2), p(365), etc., the result of the replacement of its single free vari-
able by 1, 2, 365, etc., respectively, i.e. the respective formulas ∃y (1 = 2.y), ∃y (2 = 2.y),
∃y (365 = 2.y), etc.

At the same time, if we fix aGödel numbering,5 every such pseudopredicate pwill have
a number ⌈p⌉. Then if, for instance, p is ∃y (x = 2.y) and the Gödel number ⌈p⌉ of this
formula is 365, we can form the formula ∃y (365 = 2.y) (which is, by the way, obviously
false), which results from replacing the only free variable of p by its own Gödel number;
i.e. it is the formula p(⌈p⌉). Then, if we denote the truth value of a (closed) formula f
as |f | and the opposite value as |f |, we can form the table such that the number in the
intersection of the ith row and the jth column indicates whether the number ⌈pi⌉ has the
property pj, i.e. it is the truth value of the formula pj(⌈pi⌉) (which is the formula that
results from the replacement of all occurrences of the single free variable of pj by the
numeral ⌈pi⌉):

4 In an extreme form this may lead to the theory of dialetheism (see Priest [1998]), according to which there
really are propositions that are both true and false.

5 As Gödel showed, the expressions of the language of arithmetic can be “enumerated”, i.e. mapped on nu-
merals in such a way that the mapping is one-to-one and that we are able to compute the number of any
formula and find the formula with any given number.
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p1 p2 p3 ... AD

p1 |p1(⌈p1
⌉)| |p2(⌈p1

⌉)| |p3(⌈p1
⌉)| ... |p1(⌈p1

⌉)|

p2 |p1(⌈p2
⌉)| |p2(⌈p2

⌉)| |p3(⌈p2
⌉)| ... |p2(⌈p2

⌉)|

p3 |p1(⌈p3
⌉)| |p2(⌈p3

⌉)| |p3(⌈p3
⌉)| ... |p3(⌈p3

⌉)|

p4 |p1(⌈p4
⌉)| |p2(⌈p4

⌉)| |p3(⌈p4
⌉)| ... |p4(⌈p4

⌉)|

p5 |p1(⌈p5
⌉)| |p2(⌈p5

⌉)| |p3(⌈p5
⌉)| ... |p5(⌈p5

⌉)|

... ... ... ... ... ...

The antidiagonal now maps ⌈pi⌉ on the truth value opposite to that of pi(⌈pi⌉), and it
is immediately clear that no formula of arithmetic can yield this mapping. And, unlike
the case of not having itself considered in the context of all conceivable properties, this
conclusion is not problematic – on the contrary, it is good for arithmetic to be put together
so that it avoids the paradox.

Now Gödel showed, among other things, that the function mapping the number of
a formula p on the number of p(⌈p⌉) can be expressed by a term with a free variable of
the language of PA – we can introduce the function symbolDg that expresses it. Suppose
that we have a pseudopredicate Tr such that is true precisely of numbers of true formulas.
In this case, we could form the formula ¬Tr(Dg(x)), which would produce precisely the
antidiagonal column – indeed, it would be true of a formula p just in case p(⌈p⌉) would
not be true. It follows that the language of PA cannot contain the pseudopredicate Tr.
(This result is sometimes referred to as Tarski’s theorem.)

On the other hand Gödel showed that there is a pseudopredicate which is true (and
provably so) precisely of numbers of formulas provable within PA, and that hence we
can introduce the predicate symbol Pr with this property. Hence we do have the formula
¬Pr(Dg(x)) which appears to be an analogue of the previous one with provability in place
of truth. So consider a variation of the previous table in which the number in the cell at
the intersection of the ith row and the jth column now indicates whether the number ⌈pi⌉
has the property pj provably, i.e. it is 1 iff the formula pj(⌈pi⌉) is provable (i.e. provably
true) and is 0 iff it is refutable (i.e. provably false, its negation being provable). If ||f || is 1
for a provable f and is 0 for a refutable f (and ||f || is the opposite value), we have

p1 p2 p3 ... AD

p1 ||p1(⌈p1
⌉)|| ||p2(⌈p1

⌉)|| ||p3(⌈p1
⌉)|| ... ||p1(⌈p1

⌉)||

p2 ||p1(⌈p2
⌉)|| ||p2(⌈p2

⌉)|| ||p3(⌈p2
⌉)|| ... ||p2(⌈p2

⌉)||

p3 ||p1(⌈p3
⌉)|| ||p2(⌈p3

⌉)|| ||p3(⌈p3
⌉)|| ... ||p3(⌈p3

⌉)||

p4 ||p1(⌈p4
⌉)|| ||p2(⌈p4

⌉)|| ||p3(⌈p4
⌉)|| ... ||p4(⌈p4

⌉)||

p5 ||p1(⌈p5
⌉)|| ||p2(⌈p5

⌉)|| ||p3(⌈p5
⌉)|| ... ||p5(⌈p5

⌉)||

... ... ... ... ... ...
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Now does the pseudopredicate ¬Pr(Dg(x)) produce this antidiagonal? We know this
cannot be the case – if it were, then we would have a contradiction, for the antidiagonal
is different from all the columns in the table, and yet as ¬Pr(Dg(x)) is a pseudopredicate
of the language of PA, it would have to be one of the columns. Why this is not the case?

It is the case that if ||p(⌈p⌉)|| = 1, i.e. if p is provably true of itself, ¬Pr(Dg(⌈p⌉)) is
provably false and hence ||¬Pr(Dg(⌈p⌉))|| = ||p(⌈p⌉)|| = 0. (This follows from the fact that
p(⌈p⌉) is provable iff Pr(⌈p(⌈p⌉)⌉) is provable, and Pr(⌈p(⌈p⌉)⌉) is equivalent to
Pr(Dg(⌈p⌉)) and hence to ¬¬Pr(Dg(⌈p⌉))). Conversely, if ||p(⌈p⌉)|| = 0, then ||p(⌈p⌉)||
= 1. Hence the new column contains 1 iff the diagonal contains 0. Thus, the new column
would be the antidiagonal – and the contradiction would be inevitable – if it were the case
that any formula were provably true iff it were not provably false. (For in this case all cells
of the diagonal which would not contain 1’s would contain 0’s and the corresponding cells
of the new column would contain 1’s.) But while no formula is at the same time provable
and refutable (at least as long as PA is consistent), it need not be the case that every for-
mula is either provable, or refutable. And we see that it cannot be the case, in pain of
contradiction. Hence if PA is consistent, then it is not complete, in pain of contradiction.
This is the celebrated incompleteness discovered and proven by Gödel [1931].

5. Fixed points

Let us investigate an alternative way of reaching incompleteness via diagonalization, a
way that is closer to the way Gödel himself proceeded. Consider a property q of numbers,
i.e. a mapping of numbers on truth values. Let us form a column, p*, by associating every
pseudopredicate p with q applied to Dg(⌈p⌉):

p*

p1 q(⌈p1(⌈p1
⌉)⌉)

p2 q(⌈p2(⌈p2
⌉)⌉)

p3 q(⌈p3(⌈p3
⌉)⌉)

p4 q(⌈p4(⌈p4
⌉)⌉)

p5 q(⌈p5(⌈p5
⌉)⌉)

... ...

Whether this column coincideswith one of the columns of the table or not depends on the
specific nature of q, in particular onwhether q is expressible in the language of PA (in view
of the obvious fact that q(⌈pi(⌈pi⌉)⌉) is expressible in arithmetic just in case q is). If, for
instance, q is is not true, then the column becomes the antidiagonal. On the other hand,
if q is expressible in arithmetic, then there must be a pj which expresses q(⌈pi(⌈pi⌉)⌉).
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In this case, consider the cell in the intersection of the jth row and the jth column.
According to the definition of the table, it will contain the truth value of pj(⌈pj⌉). On
the other hand, in view of the fact that this column coincides with that for p*, it will also
contain the truth value of q(⌈pj(⌈pj⌉)⌉). As a result, the values of q(⌈pj(⌈pj⌉)⌉) and pj(⌈pj⌉)
are bound to coincide; schematically q(⌈pj(⌈pj⌉)⌉) ↔ pj(⌈pj⌉). Hence, we have shown
what is usually called the fix point lemma: for every property q expressible in arithmetic
there will be a sentence sq of arithmetic such that q(⌈sq⌉) ↔ sq.

In this way, we arrive at the inexpressibility of the truth property in arithmetic by an
alternative route. If the property were expressible, then its negation would be also and it
would have a fixed point s¬Tr such that ¬Tr(⌈s¬Tr⌉) ↔ s¬Tr and hence that Tr(⌈s¬Tr⌉) ↔
¬s¬Tr . But as Tr is a truth predicate only if Tr(⌈s⌉) ↔ s for every statement s6, it is also
the case that Tr(⌈s¬Tr⌉) ↔ s¬Tr . Putting the two equivalences together, we have s¬Tr ↔
¬s¬Tr ; and hence we have a contradiction.

Now imagine that we take q to be the property of non-provability, i.e. a property which
a number has iff it is a number of a formula not provable in PA.We already know that this
property is expressible in arithmetic, so it does have a fixed point. Hence, there is a s¬Pr so
that ¬Pr(⌈s¬Pr⌉) ↔ s¬Pr . Now suppose that s¬Pr is provable; if so, then so is ¬Pr(⌈s¬Pr⌉).
But this could only be if s¬Pr were not provable, hence the assumption of the provability
of s¬Pr leads to the contradictory conclusion of its non-provability; hence, s¬Pr cannot
be provable. Suppose, then, that s¬Pr is refutable, hence that ¬s¬Pr is provable. Then
Pr(⌈s¬Pr⌉) is provable, and, as a result, s¬Pr is provable. Hence s¬Pr cannot be refutable
either – in pain of inconsistency.

6. Turingmachines

The problem of the decidability of an axiomatic system is the problem of whether we
can always decide if a given formula of the system is a theorem. Note that if the system
is such that every formula that is not provable is refutable, then the decision procedure
is always at hand: we use the axioms and rules to continue generating the theorems and,
sooner or later, we must reach either the formula, or its negation. (True, it might be a
procedure that is not very practical since reaching the result may take a lot of time, but
it works.) If, on the other hand, this is not the case (and in case of languages of pure
logic it cannot be the case, for their theorems are only logical truths, and certainly not
every negation of a sentence that is not logically true is logically true), the existence of a
decision procedure is not guaranteed.

AlanTuring [1937], when he dealt with this problem, saw the necessity of exactly speci-
fying what is a “procedure” or an “algorithm”. His answer to this question was the abstract
machines which later came to bear his name: Turing machines. For simplicity’s sake, let
us assume that themachines deal only with natural numbers, i.e. that if any suchmachine
is fed with a natural number it starts computing and, if it halts, it yields another natural
number. Thus, any such machine “realizes” a function from natural numbers to natural

6 The fact that this is precisely what characterized the property of truth was argued for by Tarski [1932].
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numbers. We will not talk about the inner structure of the machines here, but we note
that any such machine is uniquely describable by language and hence can be identified
with a certain (sometimes perhaps very long) expression. Thus, all the machines can be
enumerated (M1, M2, ...) and we can also always find the nth machine according to the
enumeration.

Now consider the table with rows labeled with natural numbers and columns labeled
with Turing machines. The number in the intersection of the ith row and the jth column
is the value yielded by Mj for the input i (as the machine may not stop, the cell may be
also empty).7 Construct an antidiagonal as indicated in the table (where we takeMi[i]+1
to be 0 iff Mi does not stop for the input i):

M1 M2 M3 M4 M5 ... ?

1 M1[1] M2[1] M3[1] M4[1] M5[1] ... M1[1]+1

2 M1[2] M2[2] M3[2] M4[2] M5[2] ... M2[2]+1

3 M1[3/] M2[3] M3[3] M4[3] M5[3] ... M3[3]+1

4 M1[4] M2[4] M3[4] M4[4] M5[4] ... M4[4]+1

5 M1[5] M2[5] M3[5] M4[5] M5[5] ... M5[5]+1

... ... ... ... ... ... ...

The antidiagonal cannot be computable by a Turing machine (since it is different from
every column of the original table, which correspond to every Turing machine). But is
it really not computable? Imagine the following computation: given a number j we find
the machine Mj (we have already noted that we can do this), we let it run on the input j,
add 1 and ... voilà! There is, of course, a snag. We must wait until Mj stops and yields its
result; but what if it never stops? We would be waiting forever (for we would never know
whether it merely has not stopped yet, or whether it would never stop). Hence, what we
would need is an algorithm which would be able to tell us, for any given machine M and
any input i, whether M ever stops for i.

Hence, there cannot be a Turing machine solving this halting problem – and insofar
as we are convinced that everything that is solvable is solvable by a Turing machine, the
problem is generally unsolvable. And, as it can be shown that the halting problem would
be solvable if the predicate calculus were decidable (the stopping of every Turingmachine

7 In fact, the result that at least some machines cannot stop for every argument can be established by means
of a consideration similar to that by which we established the incompleteness of arithmetic. Imagine a
universal Turing machine U , a machine that is able to simulate any Turing machine in the sense that if
it gets, as its input, the description of some Turing machine m plus some data d (we will write U (m⊕d)
(where ‘⊕’ symbolizes concatenation by means of some kind of separator) it stops just in case m stops for
the input d and in that case it yields the same value: U(m⊕d) = m(d). It is easy to turn U into a machine
U′ such that U′(m⊕d) ≠m(d) whenever m stops for d. Further, it is easy to turn U′ into U′′ such that
U′′(d) = U′(d⊕d). Now U′′(U′′) = U′(U′′⊕U′′) ≠ U′′(U′′). This shows that U′′ can never stop for
the data U′′.
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turns out to be equivalent to a certain formula being true – see Boolos et al. [2002]),
predicate calculus is undecidable.

7. Conclusion

Diagonalization is, in essence, a trivial method of constructing, for a square table, a
column that is not yet contained in the table. However, it has far-reaching consequences;
in fact, consequences that reach as far as the most path-breaking problems and results of
modern logic. It allows us to extend the trivial observation that there are more subsets
than elements of a set from the finite case to infinite ones, thus establishing the need for
a hierarchy of infinities, instantiated by the infinite of natural numbers, that of real num-
bers, etc. Also, it allows us to see that not having itself is a property of properties that
is strangely anomalous in that once it is expressed in a language, it makes the language
inconsistent. Within the framework of the exactly delimited language of arithmetic, this
yields us, first, the consequence that the concept of truth cannot be expressed by any
pseudopredicate of the language; and, second, as there is a predicate expressing the con-
cept of provability, the consequence that the language must be incomplete. Applied to
the realm of Turing machines, it further yields us the result that the halting problem for
these machines must be unsolvable. In this way, the prima facie simple observation of the
possibility to diagonalize any square table leads us to a battery of very nontrivial results
constituting, as it were, the central nervous system of modern logic.
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