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The proof of correctness and completeness of a logical calculus w.r.t. a
given semantics can be read as telling us that the tautologies (or, more gen-
erally, the relation of consequence) specified in a model-theoretic way can
be equally well specified in a proof-theoretic way, by means of the calculus
(as the theorems, resp. the relation of inferability of the calculus). Thus
we know that both for the classical propositional calculus and for the clas-
sical predicate calculus theorems and tautologies represent two sides of the
same coin. We also know that the relation of inference as instituted by any
of the common axiom systems of the classical propositional calculus coin-
cides with the relation of consequence defined in terms of the truth tables;
whereas the situation is a little bit more complicated w.r.t. the classical
predicate calculus (the coincidence occurs if we restrict ourselves to closed
formulas; otherwise ∀xFx is inferable from Fx without being its conse-
quence). And of course we also know cases where a class of tautologies of
a semantic system does not coincide with the class of theorems of any cal-
culus. (The paradigmatic case is the second-order predicate calculus with
standard semantics.)
This may make us consider the problem of “inferentializability”. Which

semantic systems are “inferentializable” in the sense that their tautologies
(their relation of consequence, respectively) coincide with the class of the-
orems (the relation of inferability, respectively) of a calculus? One answer
is ready: it is if and only if the set of tautologies is recursively enumarable.
But this answer is not very informative, indeed saying that the set is re-
cursively enumerable is only reiterating that it conicides with the class of
theorems of a calculus. Moreover, paying due attention to the terms such
as “calculus” and “inference” shows us that it is possible to relate them to
various “levels”, whereby the problem of inferentializability becomes quite
nontrivial.

∗Work on this paper was supported by the grant No. 401/07/0904 of the Czech Science
Foundation.
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1 Consequence

Consequence, as the concept is usually understood, amounts to truth-preser-
vation, i.e., A is a consequence of A1, . . . , An iff the truth of all of A1, . . . , An

brings about the truth of A, i.e., iff any truth valuation mapping all of
A1, . . . , An on 1 maps also A on 1.1 It is obvious that the “any” from the
previous sentence cannot mean “any whatsoever” (of course there does ex-
ist a function mapping all of A1, . . . , An on 1 and A on 0!), it must mean
something like “any admissible”. Hence there must be some concept of ad-
missibility in play: some mappings of sentences of {0, 1} will be admissible,
others not. But, of course, that if we take the sentences to be sentences
of a meaningful language, such a division of valuations is forthcoming: if
A1, . . . , An are Fido is a dog and Every dog is a mammal (hence n = 2), A
is Fido is a mammal, then the valuation mapping the former two sentences
on 1 and the latter one on 0 is not admissible — it is not compatible with
the semantics of English.
Hence we assume that any semantics of any language provides for the

division of the sentences of the language into true and false, thereby di-
viding the space of the mappings of the sentences on {0, 1} into admissible
and inadmissible. (In fact I maintain a much stronger thesis, namely that
any semantics can be reduced to such a division, but I am not going to
argue for this thesis here — I have done so elsewhere, see (Peregrin, 1997).)
Thereby it also establishes the relation of consequence, as the relation of
truth-preservation for all admissible valuations. If we use the sentences
S1, S2, . . . of the language in question to mark columns of the following
table using all possible truth-valuations as its rows, we can look at the
delimitation of the admissible valuations as striking out rows of the table.

S1 S2 S3 S4 · · ·
v1 0 0 0 0 · · ·
v2 1 0 0 0 · · ·
v3 0 1 0 0 · · ·
v4 1 1 0 0 · · ·
v5 0 0 1 0 · · ·
v6 1 0 1 0 · · ·
...

...
...
...
...
. . .

1 See (Peregrin, 2006).
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A more exact articulation of these notions yields the following definition:

Definition 5. A semantic system is an ordered pair 〈S, V 〉, where S is a set
(the elements of which are called sentences) and V ⊆ {0, 1}S . The elements
of {0, 1}S are called valuations (of S). (A valuation will be sometimes
identified with the set of all those elements of S that are mapped on 1 by
it.) The elements of V are called admissible valuations of 〈S, V 〉, the other
valuations (i.e. the elements of {0, 1}S \ V ) are called inadmissible. The
relation of consequence induced by this system is the relation |= defined as
follows

X |= A iff v(A) = 1 for every v ∈ V such that v(B) = 1 for every B ∈ X.

2 Varieties of Inference

Now consider the stipulation of an inference, A1, . . . , An ⊢ A (for some
elements A1, . . . , An, A of S). Such a stipulation can be seen as excluding
certain valuations: namely all those that map A1, . . . , An on 1 and A on 0.
(Thus, for example, the exclusions in the above table might be the result
of stipulating S1 ⊢ S2.) Hence if we call the pair constituted by a finite set
of elements of S and an element of S an inferon, we can say that inferons
exclude valuations and ask which sets of valuations can be demarcated by
means of inferons.

Definition 6. An inferon (over S) is an ordered pair 〈X,A〉 where X is a
finite subset of S and A is an element of S. An inferon is said to exclude
an element v of {0, 1}S iff v(B) = 1 for every B ∈ X and v(A) = 0. An
ordered pair 〈S,⊢〉 such that S is a set and ⊢ is a finite set of inferons
(i.e. a binary relation between finite subsets of S and elements of S) will be
called an inferential structure. An inferential structure is said to determine
a semantic system 〈S, V 〉 iff V is the set of all and only elements of {0, 1}S
not excluded by any element of ⊢. A semantic system is called an inferential
system iff it is determined by an inferential structure.

Now an obvious question is which semantic systems are inferential. But
before we turn our attention to it, we will consider various possible gener-
alizations of the concept of inference. First, let a quasiinferon differ from
an inferon in that its second component is not a single statement, but a
finite set of statements. A quasiinferon will exclude every valuation that
maps every element of its first component on 1 and every element of its
second component on 0. (Of course the concept of quasiinferon defined
in this way is closely connected with the concept of sequent as introduced
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by (Gentzen, 1934) and (Gentzen, 1936).2) Second, let a semiinferon dif-
fer from an inferon in that its first component is not necessarily finite. A
semiquasiinferon will be a quasiinferon with both its first and its second
component not necessarily finite. Third, let a protoinferential structure
be an inferential structure with its second component not necessarily finite
(and think of the concepts of protosemiinferential, protoquasiinferential and
protosemiquasiinferential structure analogously).
In the following definition, we abbreviate the prefixes, which have already

become somewhat monstrous:

Definition 7. An element of Pow(S) × Pow(S) is called an SQI-on over
S. It is called a QI-on if it is an element of FPow(S) × FPow(S) (where
FPow(S) is the set of all finite subsets of S), it is called an SI-on if it is
an element of Pow(S) × S and it is called an I-on if it is an element of
FPow(S)×S.3 The ordered pair 〈S,⊢〉 where ⊢ is a set of SQI-ons (QI-ons,
SI-ons, I-ons) will be called a PSQI-structure (PQI-structure, PSI-structure,
PI-structure). It is called an SQI-structure (QI-structure, SI-structure, I-
structure) iff ⊢ is finite. An SQI-on 〈X,Y 〉 is said to exclude an element v
of {0, 1}S iff v(B) = 1 for every B ∈ X and v(A) = 0 for every A ∈ Y . A
(P)(S)(Q)I-structure 〈S,⊢〉 is said to determine a semantic system 〈S, V 〉 iff
V is the set of all and only elements of {0, 1}S not excluded by any element
of ⊢. A semantic system is called a (P)(S)(Q)I-system iff it is determined
by a (P)(S)(Q)I-structure.

Summarizing the concepts introduced in this definition, we have the fol-
lowing table:

〈S,⊢〉 is a. . . iff ⊢ is a. . . ⊢ thus being a subset of
I-structure a finite set of I-ons FPow(S)× S
QI-structure a finite set of QI-ons FPow(S)× FPow(S)

SI-structure a finite set of SI-ons Seq(S)× S
PI-structure a set of I-ons FPow(S)× S
SQI-structure a finite set of SQI-ons Pow(S)× Pow(S)

PQI-structure a set of QI-ons FPow(S)× FPow(S)

PSI-structure a set of SI-ons Seq(S)× S
PSQI-structure a set of SQI-ons Pow(S)× Pow(S)

2For an exposition of sequent calculus and its relationship to the more straightforwardly
inferential approach as embodied in natural deduction see, e.g., (Negri & Plato, 2001).
3Throughout the whole paper we identify singletons with their respective single elements;
hence we often write simply v instead of {v}.
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Our aim now is to find criteria of the various levels of inferentializability.
Before we state and prove theorems crucial in this respect, we introduce
some more definitions.

3 Criteria of Inferentializability

Definition 8. Let U be a set of valuations of a semantic system 〈S, V 〉
(i.e. a subset of {0, 1}S). T (U) (the set of U -tautologies) will be the set of
all those elements of S which are mapped on 1 by all elements of U ; and
analogously C(U) (the set of U -contradictions) will be the set of all those
elements of S which are mapped on 0 by all elements of U . Let X and Y be
subsets of S. The cluster generated by X and Y , Cl[X,Y ], will be the set
of all the valuations that map all elements of X on 1 and all elements of Y
on 0. Generally, U is a cluster iff it contains (and hence is identical with)
Cl[T (U), C(U)]. A cluster U is called finitary iff both T (U) and C(U) are
finite, it is called inferential iff C(U) is a singleton.

Now it is clear that a semantic system 〈S, V 〉 is a PSQI-system iff {0, 1}S\
V is a union of clusters. (Hence every semantic system is a PSQI-system,
for every single valuation constitutes a cluster.) The reason is that a system
is a PSQI-system if its inadmissible valuations are determined by a set of
SQI-ons and what an SQI-on excludes is a cluster of valuations. If we use
specific kinds of SQI-ons, such as SI-ons, we will have a specific kind of
clusters, like inferential clusters; and if we allow for only a finite number of
SQI-ons, we will have to count with only finite unions. This yields us the
facts summarized in the following table:

〈S, V 〉 is a. . . iff {0, 1}S \ V is a union of. . .
PSQI-system clusters

PSI-system inferential clusters

PQI-system finitary clusters

SQI-system a finite number of clusters

PI-system finitary inferential clusters

SI-system a finite number of inferential clusters

QI-system a finite number of finitary clusters

I-system a finite number of finitary inferential clusters

Theorem 3. A semantic system 〈S, V 〉 is a PSI-system iff V contains
every v ∈ {0, 1}S such that for every A ∈ C(v) there is a v′ ∈ V such that
T (v) ⊆ T (v′) and A ∈ C(v′).
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Proof. A semantic system 〈S, V 〉 is a PSI-system system iff {0, 1}S \ V is
a union of inferential clusters. This is to say that it is a PSI-system iff for
every v ∈ {0, 1}S \ V there is a set X ⊆ T (v) and a sentence A ∈ C(v)
such that no valuation v′ such that X ⊆ T (v′) and A ∈ C(v′) is admissible.
In other words, 〈S, V 〉 is a PSI-system iff for every v 6∈ V there is a set
X ⊆ T (v) and a sentence A ∈ C(v) such that V does not contain any v′

such that X ⊆ T (v′) and A ∈ C(v′). By contraposition, 〈S, V 〉 is a PSI-
system iff the following holds: given a valuation v, if for every set X ⊆ T (v)
and every sentence A ∈ C(v) there is a v′ ∈ V such that X ⊆ T (v′) and
A ∈ C(v′), then v ∈ V . This condition can obviously be simplified to: given
a valuation v, if for every sentence A ∈ C(v) there is a v′ ∈ V such that
T (v) ⊆ T (v′) and A ∈ C(v′), then v ∈ V .

Theorem 4. A semantic system 〈S, V 〉 is a PQI-system iff V contains
every v such that for every finite X ⊆ T (v) and finite Y ⊆ C(v) there is a
v′ ∈ V such that X ⊆ T (v′) and Y ⊆ C(v′).

Proof. A semantic system 〈S, V 〉 is a PQI-system system iff {0, 1}S \V is a
union of finite clusters. This is to say that it is a PQI-system iff for every
v ∈ {0, 1}S \ V there are finite sets X ⊆ T (v) and Y ⊆ C(v) such that no
valuation v′ such that X ⊆ T (v′) and Y ⊆ C(v′) is admissible. In other
words, 〈S, V 〉 is a PQI-system iff for every v 6∈ V there are sets X ⊆ T (v)
and Y ⊆ C(v) such that V does not contain any v′ such that X ⊆ T (v′) and
Y ⊆ C(v′). By contraposition, 〈S, V 〉 is a PQI-system iff the following holds:
given a valuation v, if for every sets X ⊆ T (v) and Y ⊆ C(v) there is a
v′ ∈ V such that X ⊆ T (v′) and Y ⊆ C(v′), then v ∈ V . This condition can
obviously be simplified to: given a valuation v, if for every finite X ⊆ T (v)
and finite Y ⊆ C(v) there is a v′ ∈ V such that X ⊆ T (v′) and Y ⊆ C(v′),
then v ∈ V .

We leave out the proof of the following theorem, as it is straightforwardly
analogous to the proofs of the previous two.

Theorem 5. A semantic system 〈S, V 〉 is a PI-system iff V contains every
v such that for every finite X ⊆ T (v) and every A ∈ C(v) there is a v′ ∈ V
such that X ⊆ T (v′) and A ∈ C(v′).

Hence we have necessary and sufficient conditions for a semantic system
being a PSI-, a PQI-, or a PI-system. Unfortunately, we do not have such
conditions for its being an SQI-, an SI-, a QI-, or an I-system. However, we
are able to formulate at least a useful necessary condition for its being an
SQI-system.
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Theorem 6. A semantic system 〈S, V 〉 is an SQI-system only if V contains
no v such that for every finite X ⊆ T (v) and finite Y ⊆ C(v) there is a
v′ 6∈ V such that X ⊆ T (v′) and Y ⊆ C(v′).

Proof. A semantic system 〈S, V 〉 is a PQI-system iff {0, 1}S \ V is a finite
union of clusters. Hence if it is a PQI-system, there must exist a finite set
I and two collections 〈Xi〉i∈I , 〈Y i〉i∈I of subsets of S so that

{0, 1}S \ V =
⋃

i∈I

Cl[Xi, Y i].

This is the case iff V equals the complement of
⋃

i∈I

Cl[Xi, Y i], hence iff

V =
⋂

i∈I

Cl[Xi, Y i].

But as Cl[Xi, Y i] = {v : Xi ⊆ T (v) and Y i ⊆ C(v)},

Cl[Xi, Y i] = {v : Xi 6⊆ T (v) or Y i 6⊆ C(v)} =

= {v : Xi ∩ C(v) 6= ∅ or Y i ∩ T (v) 6= ∅} =

= {v : Xi ∩ C(v) 6= ∅} ∪ {v : Y i ∩ T (v) 6= ∅} =

=
⋃

x∈Xi

{v : x ∈ C(v)} ∪
⋃

y∈Y i

{v : y ∈ T (v)} =

=
⋃

x∈Xi

Cl[∅, {x}] ∪
⋃

y∈Y i

Cl[{y}, ∅].

Now using the generalized de Morgan’s law saying that

⋂

j∈I

⋃

j∈J

Zj
i =

⋃

f∈F

⋂

j∈I

Zj

f(j)

where F = IJ , we can see that

V =
⋃

f∈F

⋂

j∈f+

Cl[f(j), ∅] ∩
⋂

j∈f−

Cl[∅, f(j)]

where F is the set of all functions mapping every i ∈ I on an element of f(i)
of Xi∪Yi, and f

+, and f−, respectively, are the sets of all those elements of
I that are mapped by f on elements of Xi, and Yi, respectively. It further
follows that

V =
⋃

f∈F

Cl[Xf , Y f ]

where Xf = {f(j) : j ∈ f+} and Y f = {f(j) : j ∈ f−}. As both f+ and f−

are finite, this means that V is a union of finite clusters. It follows that for
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every v ∈ V there are finite sets X ⊆ T (v) and Y ⊆ C(v) such that every
valuation v′ such that X ⊆ T (v′) and Y ⊆ C(v′) is admissible. In other
words, for every v ∈ V there are sets X ⊆ T (v) and Y ⊆ C(v) such that V
contains every v′ such that X ⊆ T (v′) and Y ⊆ C(v′). By contraposition:
given a valuation v, if for every set X ⊆ T (v) and Y ⊆ C(v) there is a
v′ 6∈ V such that X ⊆ T (v′) and Y ⊆ C(v′), then v 6∈ V . This condition can
obviously be simplified to: given a valuation v, if for every finite X ⊆ T (v)
and finite Y ⊆ C(v) there is a v′ 6∈ V such that X ⊆ T (v′) and Y ⊆ C(v′),
then v 6∈ V .

4 A Hierarchy of Semantic Systems

Let us introduce some more definitions.

Definition 9. A semantic system 〈S, V 〉 is called
• saturated iff V contains every v such that for every A ∈ C(v) there is
a v′ ∈ V such that T (v) ⊆ T (v′) and A ∈ C(v′);

• compact iff V contains every v such that for every finite X ⊆ T (v) and
finite Y ⊆ C(v) there is a v′ ∈ V such that X ⊆ T (v′) and Y ⊆ C(v′);

• co-compact iff V contains no v such that for every finite X ⊆ T (v) and
finite Y ⊆ C(v) there is a v′ 6∈ V such that X ⊆ T (v) and Y ⊆ C(v′).

• compactly saturated iff V contains every v such that for every finite
X ⊆ T (v) and every A ∈ C(v), there is a v′ ∈ V such that X ⊆ T (v′)
and A ∈ C(v′).

Given these, we can rephrase the theorems we have proved in the follow-
ing way:

Theorem 7. A semantic system 〈S, V 〉 is
• always a PSQI-system;

• a PSI-system iff it is saturated;

• a PQI-system iff it is compact;

• an SQI-system only if it is co-compact;

• a PI-system iff it is compactly saturated;

Moreover, easy corollaries of the theorems are the following necessary
conditions for a system being an SI-, a QI- and an I-system:

Corollary 2. A semantic system 〈S, V 〉 is
• an SI-system only if it is saturated and co-compact;
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• a QI-system only if it is compact and co-compact;

• an I-system only if it is compactly saturated and co-compact.

The kinds of semantic systems we have introduced can be arranged into
the following diagram, where the arrows indicate containment in the sense
that an arrow leads from a concept to a different one if the extension of the
former includes that of the latter.

I-system [Σ8]

PI-system [Σ5] QI-system [Σ6] SI-system [Σ7]

PQI-system [Σ2] SPI-system [Σ3] SQI-system [Σ4]

SPQI-system = semantic system [Σ1]

Diagram 1

What we are going to show now is that all the inclusions are proper.
The symbols in brackets following each kind term is the name of a semantic
system which will witness the properness. The systems are the following (S
is supposed to be an infinite set):

• Σ1 = 〈S, {v ∈ Pow(S) : T (v) is finite}〉;

• Σ2 = 〈S, {∅}〉;

• Σ3 = 〈S, {v ∈ Pow(S) : C(v) is finite}〉;

• Σ4 = 〈S,Pow(S) \ {S}〉;

• Σ5 = 〈S, {S}〉;

• Σ6 = 〈{A,B}, {{A}, {B}}〉;

• Σ7 = 〈S, {v ∈ Pow(S) : C(v) = A}〉 for a fixed A ∈ S;

• Σ8 = 〈{A,B}, {{A,B}, {B}}〉.

To show that they do fit into the very slots of Diagram 1 where we have
put them, let us first give one more definition:

Definition 10. A valuation is called full if it maps every sentence on 1.
(In other words, the full valuation is S.) A valuation is called empty if it
maps every sentence on 0. (In other words, the empty valuation is ∅.)
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Σ1 is not saturated, for V does not contain the full valuation, f , though
for every A ∈ C(f) there is a v ∈ V such that T (f) ⊆ T (v) and A ∈ C(v).
(As there is no A ∈ C(v), this holds trivially. It follows that no system not
admitting the full valuation is saturated.) Hence it is not a PSI-system.
It is not compact, because V does not contain the full valuation, but for
every finite subset X of T (f) it contains a v′ such that X ⊆ T (v′) (whereas
Y ⊆ C(v′) for every finite subset Y of C(f) holds trivially); hence it is not
a PQI-system. Moreover, it is not co-compact, for V contains the empty
valuation, whereas as V cannot contain any valuation mapping only a finite
number of sentences on 0, there is, for every finite subset Y of S, a v′ 6∈ V
such that Y = C(v′). Hence it is not an SQI-system.

Σ2 is a PQI-system, for it is determined by the infinite set of QI-ons
{〈{A}, ∅〉 : A ∈ S}. However, it is not saturated, for V does not contain the
full valuation, hence it is not a P(S)I-system. Also it is not co-compact, for
V contains the empty valuation, whereas for every finite subset Y of S there
is a v′ 6∈ V such that X ⊆ C(v′) (whereas that Y ⊆ T (v′) for every finite
subset Y of T (f) holds trivially); hence it is not a (S)QI-system.

Σ3 is a PSI-system, for it is determined by the infinite set of SI-ons
{〈X,A〉 : X ⊆ S and X is infinite}. However, it is not compact, because
V does not contain the empty valuation, but for every finite subset Y of
S it contains a v′ such that Y = C(v); hence it is not a P(Q)I-system.
Moreover, it is not co-compact, for V contains the full valuation, whereas
for every finite subset Xof S there is a v′ 6∈ V such that X = T (v′), hence
it is not an S(Q)I-system.

Σ4 is an SQI-system, for it is determined by the SQI-on 〈S, ∅〉. However,
it is not saturated, for V does not contain the full valuation, hence it is
not a (P)SI-system. It is not compact, because V does not contain the
full valuation, but for every finite subset Xof S it contains a v′ such that
X = T (v′); hence it is not a (P)QI-system.

Σ5 is a PI-system for it is determined by the infinite set of I-ons {〈∅, {A}〉 :
A ∈ S}. But it is not co-compact, for V contains the full valuation, whereas
for every finite subset X of S there is a v′ 6∈ V such that X = T (v′), hence
it is not a (S)(Q)I-system.

Σ6 is a QI-system for it is determined by the finite set of QI-ons
{〈∅, {A,B}〉, 〈{A,B}, ∅〉}. But it is not saturated, for the supervaluation
of V is the empty valuation, hence it is not a (P)(S)I-system.

Σ7 is an SI-system for it is determined by the single SI-on 〈S \ {A}, A〉.
But it is not compact, for V contains, for every finite subset Y of S \ {A},
a v′ such that T (v′) = Y and C(v′) = A. Hence it is not a (P)(Q)I-system.

Σ8 is an I-system, for it is determined by the I-on 〈∅, {B}〉.
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5 Consequence revisited

If what we are interested in is the relation of consequence, then our clas-
sificatory hierarchy becomes excessively fine-grained. In particular, we are
going to show that for every (P)(S)QI-system there exists a (P)(S)I-system
with the same relation of consequence. To do this let us define a concept
introduced by (Hardegree, 2006):

Definition 11. Let U be a set of valuations of the class S of sentences.
The supervaluation of U is the valuation such that T (v) = T (U).

The next lemma shows that our Theorem 3 is equivalent to one of Hard-
egree’s results:

Lemma 1. A semantic system 〈S, V 〉 is a (P)(S)QI-system iff V contains
supervaluations of all its subsets.

Proof. This follows directly from the fact that 〈S, V 〉 is a (P)(S)QI-system
iff it is saturated, for it can be easily seen that it is saturated iff V contains
supervaluations of all its subsets.

Lemma 2. Extending admissible valuations of a semantic system by super-
valuations does not change the relation of consequence.

Proof. Let 〈S, V 〉 be a semantic system and |= the relation of consequence
induced by it. Let v be a supervaluation of a subset of V and let |=∗ be the
relation of consequence induced by 〈S, V ∪ {v}〉. Suppose the two relations
do not coincide; then there is a subset X of S and an element A of S so
that X |= A, but not X |=∗ A. This means that it must be the case that
v(B) = 1 for every B ∈ X and v(A) = 0, but that every v′ ∈ V such that
v′(B) = 1 for every B ∈ X is bound to be such that v′(A) = 1. But as v′ is
the supervaluation of an U ⊆ V , elements of U map all elements of X on 1,
whereas at least one of them maps A on 0; which is a contradiction.

This gives us the following reduced version of Diagram 1:

(Q)I-system

P(Q)I-system S(Q)I-system

PS(Q)I-system = semantic system

Diagram 2

Hence from the viewpoint of consequence, we have four types of semantic
systems:
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• Systems that are neither P(Q)I, nor S(Q)I. These are systems of the
kind of Σ1 and Σ3.

• P(Q)I-systems that are not (Q)I-systems. Examples are Σ2 and Σ5.

• S(Q)I-systems that are not (Q)I-systems. Examples are Σ4 and Σ7.

• (Q)I-systems. Systems of the kind of Σ6 and Σ8.

Consequence as induced by the truth tables of classical propositional logic
or by the model theory of the classical first-order predicate logic, of course,
fall into the last category. Indeed any logic that has a strongly sound and
complete axiomatization must trivially belong here. But even among the
semantic systems studied by logicians there are some that fall outside this
range ((Tarski, 1936) made this into a deep point — consequence, according
to him, cannot be in general captured in terms of inferential rules).
From Diagram 2 we can see that there are two ways to go beyond the

boundaries of I-systems: we may either alleviate the requirement of finite-
ness of antecedents of inferences, or alleviate the requirement of finiteness
of the whole relation of inference. The ω-rule, which is often discussed in
connection with the formalization of arithmetic, is an example of the former
way; the axiom scheme of induction, that comprises an infinity of concrete
axioms, is the example of the latter.
For a more specific example, consider the language of Peano arithmetic

with the single admissible valuation determined by the intended interpre-
tation within the standard model (let me call this system true arithmetic,
TA). As it turns out, this system is a PQI-system. Indeed, it can be deter-
mined by the PQI-structure whose relation of inference consists of the I-ons
of the form 〈∅, A〉 for every true sentence A plus the QI-ons of the form
〈{B}, ∅〉 for every false sentence B. (We know that it is not an I-system, as
we know that the truths of TA are not recursively enumerable.) Call the
single admissible valuation of the system t.
If we extend the (single-element) set of admissible valuations of TA by

the full valuation, it becomes saturated (indeed the supervaluation of every
subset of the set of its admissible truth valuations will be admissible: the
supervaluation of the empty set as well as the singleton of the full valuation
is the full valuation, whereas the supervaluation of the two remaining sets is
the valuation t). Hence this system is a PI-system (indeed, it is determined
by the PI-structure the relation of inference of which consists of the I-ons of
the form 〈∅, A〉 for every sentence A true according to t plus the I-ons of the
form 〈{B}, C〉 for every sentence B false according to t, and every sentence
C) but has the same relation of consequence as the previous system.
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6 Further steps

I hope to have shown how we can set up a useful framework for a systematic
confrontation of proof theory and semantics, especially of inference and
consequence; and that I have also indicated that this framework lets us prove
some nontrivial and interesting results. However, it should be added that
to bring results immediately concerning the usual systems of formal logic,
our classificatory hierarchy will have to be made still more fine-grained.
The point is that while we only distinguished between systems that are

determined by structures with a finite number of (S)(Q)I-ons (i.e. (S)(Q)I-
systems) and those where the finiteness requirement is alleviated (the P(S)
(Q)I-systems), we would need to consider systems in between these two
extremes. The usual systems of formal logic can be considered as gener-
alizing over inferential (as opposed to pseudoinferential) structures in two
steps. First, they allow for an infinite number of (S)(Q)I-ons, which are,
however, instances of a finite number of schemata. (This is, of course, pos-
sible only when we, unlike in the present paper, take into account some
structuring of the set of sentences and consequently of the sentences them-
selves — if we consider the sentences as generated from a vocabulary by a
set of rules.) This can be accounted for in terms of parametric SQI-ons, or
p(S)(Q)I-ons. p(S)(Q)I-systems, then, fall in between (S)(Q)I-systems and
P(S)(Q)I-system. Thus for example the semantic system of PA is a p(Q)I-
system, for the infinity of its axioms is the union of instances of a finite
number of axiom schemas. The semantic system of TA is a pSI-system,
for we know that we can have its sound and complete axiomatization if we
extend the axiomatic system with the omega-rule, which is, in our termi-
nology, a pSI-on. Second they allow for infinite sets of (S)(Q)I-ons that are
generated by a finite number of metainferential rules from sets of instances
of finite number of schemata.
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