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Abstract The entire development of modern logic is characterized by various forms
of confrontation of what has come to be called proof theory with what has earned the
label of model theory. For a long time the widely accepted view was that while
model theory captures directly what logical formalisms are about, proof theory is
merely our technical means of getting some incomplete grip on this; but in recent
decades the situation has altered. Not only did proof theory expand into new realms,
generalizing the concept of proof in various directions; many philosophers also
realized that meaning may be seen as primarily consisting in certain rules rather than
in language-world links. However, the possibility of construing meaning as an
inferential role is often seen as essentially compromised by the limits of proof-
theoretical means. The aim of this paper is to sort out the cluster of problems
besetting logical inferentialism by disentangling and clarifying one of them, namely
determining the power of various inferential frameworks as measured by that of
explicitly semantic ones.
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1 Proving, Inferring & Meaning

Modern logic, throughout its development, has witnessed repeated confrontations of
what has come to be called proof theory with what has earned the label of model
theory. The heart of theories of systems of formal logic are usually considered to be
proofs of soundness and (in)completeness, which concern the relationship between
proof-theoretically delimited theorems and model-theoretically delimited tautologies.
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Those founding fathers of modern logic for whom logic was primarily a matter of
rules, people like Frege, Peano or Russell, articulated the basic axiomatic systems of
logic, thus putting the concept of proof on a firm foundation. Thereafter, Hilbert set
up proof theory as an ambitious program based on the mathematical investigation of
arithmetized proofs, aimed at showing consistency, independence and completeness
of axiomatic systems by the perspicuous means of elementary arithmetic, and
consequently reducing mathematics to the investigation of the provability of its
statements (see [9, 10]). In the nineteen thirties, Gentzen [5, 6] showed that proof
theory need not rest on the concept of axiomatic system, and put forward in its stead
the systems of natural deduction and sequent calculi (which are not based on
inferring sentences from sentences, but rather instances of—multi-conclusion—
inference from other such instances). Recently, proof theory has come to be
understood as a wholly general investigation of proofs and proof systems, often
carried out in ways that are more algebraic than arithmetical (see [2]).

However, the thirties witnessed also the spectacular demonstration of the
limitations of proof theory—viz. Gödel’s proof of the impossibility of reaching all
truths of arithmetic (let alone more complicated systems) by means of proof theory.
This led to a revival of semantic methods in logic, due especially to Alfred Tarski
[20–23] and his school. (A semantic strand in the development of modern logic had
pre-dated Tarski, thanks to logicians who came to logic from algebra, i.e. people like
Boole, Schröder and Löwenheim, but it was Tarski who made the presuppositions of
this approach explicit.) Subsequent transformations of Tarski’s methods have given
us what we know today as model theory.

Much of the appeal of model theory was that Tarski seemed to have hit upon how
to describe directly what proof theory was able to show us at most indirectly—i.e.
what the languages of our systems of logic are about, what their terms stand for.
Proof theory, so the story went, captured cases of sentences being consequences of
other sentences, but surely a sentence can be a consequence of other sentences only
in virtue of what it says, i.e. in virtue of the fact that the terms it consists of stand for
something (objects, properties, relations ...). And it was these, allegedly semantically
more essential facts that model theory appeared to account for.

All of this generated the widely accepted view that while model theory captures
directly what logical formalisms express, proof theory is merely our technical means
of getting some incomplete grip on this. Paraphrasing the medieval saying about the
relationship between philosophy and theology, we can say that proof theory came to
be seen as the handmaiden of model theory. Proofs of the soundness and
completeness of logical calculi were relegated to being directly proofs of the
adequacy of the calculi to what they were about.

However, in recent decades the situation has altered. First, proof theory expanded
into new realms, generalizing the concept of proof in various directions. (The most
significant direction is connected to the investigation of the so-called substructural
logics.1) This makes it possible to distinguish between proofs and provability in
various weaker and stronger senses. Second, many philosophers realized that
meaning may be seen as primarily consisting in certain rules rather than in language-
world links. Within the philosophy of language, we witness the rise of inferentialism,

1 See [19].
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a doctrine that the meaning of an expression is generally its inferential role (largely
due to Brandom; see [1]);2 a corresponding doctrine, but restricted to logic, had
emerged already prior to this (stemming from Gentzen via Dummett and Prawitz) in
the context of proof-theory and it has recently yielded what has come to be called
proof-theoretical semantics (see especially [8, 15]),3 along with other contributions
characterizing themselves explicitly as “inferentialist” [18, 24].

However, the possibility of construing meaning as an inferential role is often seen
as essentially compromised by facts pointing out the limitedness of proof-theoretical
means. One of the looming objections is that, as Prior [16] putatively showed,
logical inferentialism opens the door to the vitiation of semantics by pernicious
logical operators. Another objection is that certain logical operators which look
pretty natural from the semantic viewpoint cannot be defined inferentially. (This
concerns, as noticed already by [3], some of the operators of classical logic.)4 A third
objection stems from the general feeling that inference is not a sufficiently semantic
concept to be able to yield true meaning.

The aim of this paper is to help sort out the cluster of problems besetting logical
inferentialism by disentangling and clarifying just one of them. My area of focus
concerns the relationship between inferential (proof-theoretic, or ‘syntactic’)5

methods and methods based explicitly on semantic (model-theoretic) tools,
particularly when comparing the former with those of the latter. I will propose a
very general framework for ‘measuring’ inferentializability of semantic systems. I
have already foreshadowed such a framework elsewhere (see [13]); but here I want
to refine it and to prove some basic facts regarding it.

2 The Framework

I take it for granted that the semantics of a language necessarily involves a division
of the truth valuations of its sentences into admissible and inadmissible.6 (For some
sentences, like “Dogs are animals” in English, only valuations mapping them on 1,
or only those mapping them on 0, will be admissible; but for many sentences, like
“Fido is a dog”, there will be valuations mapping them on either of the values.)7

Hence what I call a semantic system is a set (of sentences) and a set of distributions
of the two truth values among them.8

2 See [14] for an introduction.
3 Proof-theoretical semantics is the topic of the whole issue of Synthèse (148, No. 3, 2006), in which these
papers are printed.
4 Carnap’s discovery has been occasionally discussed in the literature; for the most recent exchange see
[17] and [11].
5 It is clear that from the inferentialist viewpoint, calling inference ‘syntax’ is essentially misleading;
indeed the inferentialist credo is that inference is just as capable of laying a foundation for semantics as
methods that are explicitly semantic.
6 Actually I maintain a much stronger thesis, namely that any semantics can be reduced to such a division,
but I am not going to argue for this thesis here—I have done so elsewhere, see [12].
7 Though there will not be, for example, any admissible valuation which maps “Fido is a dog” on 1 at the
same time as mapping “Fido is an animal” on 0.
8 This approach to capturing semantics stems from [25]; the framework was later elaborated by [4]. I
adapted it in [13].
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Definition Let S be a set. The elements of {0,1}S are called valuations (of S). (We
will sometimes identify a valuation with the set of all those elements of S that it
maps onto 1.) The pair <S,V>, where V⊆{0,1}S, is called a semantic system; elements
of S are called sentences and elements of V are called admissible valuations of the
system. The elements of {0,1}S\V are called inadmissible.

Hence the definition of a semantic system consists in, besides the delimitation of
the set of sentences, the demarcation of the admissible valuations. A way of carrying
out such a demarcation is to state that some sentences are inferable from others; for
this, in effect, says that some sentences cannot be false provided some others are
true. Thus, stating A1, ..., An ⊢ A (for some elements A1, ..., An, A of S) can be seen as
excluding certain valuations from the set of admissible ones: namely all those that
map all of A1, ..., An on 1 and A on 0. If we call the pair of a finite set of elements of
S and an element of S an inferon, then we can say that inferons exclude valuations
and ask which sets of valuations can be demarcated by means of inferons.

Definition An inferon (over a set S) is an ordered pair <X,A>, where X is a finite
subset of S and A is an element of S. The inferon is said to exclude an element v of
{0,1}S iff v(B)=1 for every B∈X and v(A)=0. An ordered pair <S,⊢> such that S is a
set and ⊢ is a set of inferons over S (i.e. a binary relation between finite subsets of S
and elements of S) will be called a protoinferential structure; it will be called
inferential if ⊢ is a finite set of inferons. A (proto)inferential structure is said to
determine a semantic system <S,V> iff V is the set of all and only elements of {0,1}S

not excluded by any element of ⊢. A semantic system is called a (proto)inferential
system iff it is determined by a (proto)inferential structure.

An obvious question now is which semantic systems are protoinferential. Many
systems can be shown to be protoinferential by simply displaying a protoinferential
structure that determines them. However, can we show that a system is not
protoinferential? We are going to present a theorem that turns out to be helpful in
this respect; but before doing so, a few more definitions.

Definition Let U be a set of valuations of a set S (i.e. a subset of {0,1}S). T(U) (the
set of U-tautologies) will be the set of all those elements of S which are mapped on 1
by all elements of U; and analogously C(U) (the set of U-contradictions) will be the
set of all those elements of S which are mapped on 0 by all elements of U. (Where
no confusion is likely, I will identify a singleton with its single element; so I will, for
example, write C(v) instead of C({v}).)

Theorem 1 A semantic system <S,V> is protoinferential iff V contains every
v∈{0,1}S such that for every finite X⊆T(v) and every A∈C(v) there is a v′∈V such that
X⊆T(v′) and A∈C(v′).

Proof A semantic system <S,V> is protoinferential iff there is a set ⊢ of inferons over
S such that every inadmissible valuation is excluded by at least one element of ⊢ and
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no element of ⊢ excludes any admissible valuation of <S,V>; hence it is a
protoinferential system iff for every v∈{0,1}S\V there is a finite set X⊆T(v) and a
sentence A∈C(v) such that no valuation v′∈{0,1}S such that X⊆T(v′) and A∈C(v′) is
admissible. In other words, <S,V> is a protoinferential system iff for every v∉V there
is a finite set X⊆T(v) and a sentence A∈C(v) such that V does not contain any v′ such
that X⊆T(v′) and A∈C(v′). By contraposition, <S,V> is a protoinferential system iff
the following holds: given a valuation v, if for every finite set X⊆T(v) and every
sentence A∈C(v) there is a v′∈V such that X⊆T(v′) and A∈C(v′), then v∈V. □

Hence we have a necessary and sufficient condition for the protoinferentiality
of a semantic system. This condition lets us quickly decide of many semantic
systems that they are not protoinferential. (Examples are any system that does
not admit the valuation mapping every sentence on 1, or any system that admits
all but a finite number of valuations.) What may be surprising is that the
semantics of classical propositional calculus, as defined by the truth tables of its
operators, also does not fulfill this condition. This can be seen when we
consider, e.g. the truth table for classical negation: for any sentence A which is
neither a tautology nor a contradiction there is an admissible valuation that maps A
on 1 and ¬A on 0, as well as one that maps A on 0 and ¬A on 1, but none that maps
both A and ¬A on 0, which contradicts the criterion of protoinferentiality stated by
the theorem.

3 Consequence

Every semantic system induces a relation of consequence, understood as the relation
of truth-preservation.

Definition Let <S,V> be a semantic system. The relation of consequence induced by
this system is the relation ⊨ defined as follows: if X⊆S and A∈S, then

X ⊨ A iff v(A) = 1 for every v∈V such that v(B) = 1 for every B∈X

The set of sentences of a semantic system plus its consequence relation forms
something akin to a protoinferential structure; the difference being that consequence
is a relation between (not only finite) sets of sentences and sentences. To be able to
analyze this structure from the viewpoint of its ‘inferentiality’, let us generalize our
concept of protoinferential structure in the following way:

Definition A semiinferon over a set S is an ordered pair <X,A>, where X is a (not
necessarily finite) subset of S and A is an element of S. The semiinferon is said to
exclude an element v of {0,1}S iff v(B) = 1 for every B∈X and v(A)=0. An ordered
pair <S,⊢> such that S is a set and ⊢ is a set of semiinferons (i.e. a binary relation
between subsets of S and elements of S) will be called a protosemiinferential
structure; it will be called a semiinferential structure iff ⊢ is finite. Such a structure is
said to determine a semantic system <S,V> iff V is the set of all and only elements of
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{0,1}S not excluded by any element of ⊢. A semantic system is called a (proto)
semiinferential system iff it is determined by a (proto)semiinferential structure.

Now if we take the set of sentences of a semantic system together with its
consequence relation, we have a protosemiinferential structure. Hence for every
semantic system there is a protosemiinferential structure that is inherent to it, it is the
structure of the system.

Definition The protosemiinferential structure <S, ⊨>, where ⊨ is the consequence
relation induced by the system <S,V> is called the protosemiinferential structure of
<S,V >.

To obtain a general characterization of protosemiinferential semantic systems, we
modify the previous theorem into the form corresponding to one proved by
Hardegree [7]:

Theorem 2 A semantic system <S,V> is protosemiinferential iff V contains every v
such that for every A∈C(v) there is a v′∈V such that T(v)⊆T(v′) and A∈C(v′).

Proof A semantic system <S,V> is protosemiinferential iff there is a set of
semiinferons such that every inadmissible valuation is excluded by at least one
element of the set and no element of the set excludes any admissible valuation.
This is to say that it is a protoinferential system iff for every v∈{0,1}S\V there is a
set X⊆T(v) and a sentence A∈C(v) such that no valuation v′ such that X⊆T(v′) and
A∈C(v′) is admissible. In other words, <S,V> is a protoinferential system iff for
every v∉V there is a set X⊆T(v) and a sentence A∈C(v) such that V does not contain
any v′ such that X⊆T(v′) and A∈C(v′). By contraposition, <S,V> is a protoinferential
system iff the following holds: given a valuation v, if for every set X⊆T(v) and every
sentence A∈C(v) there is a v′∈V such that X⊆T(v′) and A∈C(v′), then v∈V. This condition
can be obviously simplified to: given a valuation v, if for every sentence A∈C(v) there
is a v′∈V such that T(v)⊆T(v′) and A∈C(v′), then v∈V. □

Hardegree calls a valuation v the supervaluation of a set U of valuations iff T(v) =
T(U); and given this terminology, we can say that a semantic system <S,V> is
protosemiinferential iff V contains the supervaluation of each of its subsets. (This
follows from the fact that v is a supervaluation of a subset of V iff the following
holds: there is a U⊆V so that A∈C(v) if A∈C(u) for some u∈U and A∈T(v) if A∈T(u)
for every u∈U. And such a subset obviously exists iff for every A∈C(v) there is a
v′∈V such that T(v)⊆T(v′) and A∈C(v′).)

4 Systems that are not Protosemiinferential

The concept of a protosemiinferential system may seem quite general, so the
question is whether all the usual systems of logic can be seen as falling into this
category. But returning to the example of classical negation we can immediately see
that this is not the case even for classical logic.
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Let us analyze the example in greater detail. Let S = {A,B} and let V consist of the
two ‘truth-value-swapping’ valuations, i.e. the valuations {A} and {B}. What is the
(proto)(semi)inferential structure of the system? It is clear that the valid instances of
consequence within this system will be the following:

Hence the structure of the system is the inferential structure whose inference
relation consists of the following four inferons:

< Af g;A>
< A;Bf g;Ag>
< Af g;B>
< A;Bf g;B>

It is readily seen that none of these inferons excludes any valuation. In other
words, this inferential structure does not determine the original semantic system
<{A,B}, {{A},{B}}>, but rather the ‘full’ system <{A,B}, {∅,{A},{B},{A,B}}>, in
which any sentence is a consequence of any others. It is also readily seen that
extending the inferential relation would not help; for let us list all the inferons that
could be added to the structure and let us list the valuations of S that they would
exclude along with each of them:

<∅;A> ∅; Bf g
<∅;B> ∅; Af g
< Bf g;A> Bf g
< Af g;B> Af g

We can see that no combination of the inferons is capable of excluding the
valuation {A,B}; and also no combination is capable of excluding ∅ without
excluding either {A} or {B}. In other words, no (proto)(semi)inferential structure
determines the system <{A,B},{{A},{B}}>.

Let us make a little digression and note that this indicates that the relation
between semantic systems and protosemiinferential structures that results from
associating a structure with the system it determines, is many-one: there may be
many structures determining the same system (whereas, on the other hand, there
are systems determined by no structure). There is, obviously, only one structure
that is the structure of the system—it is the structure whose relation of
inference coincides with the relation of consequence of the system. The fact
that there may be more structures determining the same system, then, is due to
the fact that some (semi)inferons do not exclude any valuation, and hence
adding them to a structure determining a semantic system produces a different
structure determining the same system. Only when we add all such (semi)inferons,
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the structure becomes ‘saturated’ and it becomes the structure of the system. Hence
there exist (semi)inferons which are ‘idle’ in the sense of not excluding any
valuations.

Similarly, the relation which results from associating a system with the structure
of the system is many-one; whereas there is only one system that is determined by
the structure. Again, additions of some valuations to a system causes no change of
the relation of consequence of the system (and hence of the structure of the system)
and it is only when all such valuations are present that we gain a system that is
‘saturated’ and hence determined by its own structure. Thus, besides inferons that
are ‘idle’ in that they do not exclude any valuations, there are valuations that are
‘idle’ in the sense that their presence/absence does not influence the structure of the
system.

Both the ‘idle’ inferons and the ‘idle’ valuations were characterized, in effect,
by Hardegree (ibid.), who wanted to answer the question which systems are
determined by their own structures and, conversely, which structures are the
structures of the systems they determine. (This is not directly Hardegree’s
terminology, but rather the result of translating his results into our conceptual
framework.) Hardegree has shown that the former systems are those that are closed
w.r.t. supervaluations and the latter structures are those that are closed w.r.t. the
following closure conditions:

X ⊢ A if A is an element of X
X ⊢ A if X ⊢ B for every element B of an Y such that Y ⊢ A

The last result corresponds to the result I presented elsewhere ([13], Theorem
3): namely that a structure is a structure of a semantic system—I called such a
structure truth-preserving there—iff it complies with the Gentzenian structural
rules. (Here, as we count the premises of an inference as a set, rather than a
sequence, two of the rules, namely contraction and permutation, are superfluous.
The second of Hardegree’s rules amounts to cut, whereas the first one is a
generalized version of reflexivity, which follows from the reflexivity via expansion
and yields expansion together with cut.) Let us call the inferons that are obtainable
from some given ones by means of the Gentzenian structural (meta)rules their
structural consequences.

Hence we can summarize that a valuation is ‘idle’ in the above sense iff it is a
supervaluation of a set of admissible valuations and that a (semi)inferon is ‘idle’ iff it
is a structural consequence of already valid (semi)inferons. Hence the following
picture:
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Returning from the digression, we can say that what is important for us is that the
example of negation showed us that even some very simple semantic systems are not
protosemiinferential. In particular, we saw that we cannot get classical negation, and
hence classical logic, by means of semiinferons. What kind of a further
generalization of the concept of protosemiinferential structure would lead us to a
concept that would comprise classical logic?

It is easy to see that what would help is to generalize the concept of (semi)
inferon from one of single-conclusion to one of multiple-conclusion, along the
lines familiar from sequent calculus. Hence we can think of defining a
semiquasiinferon as an ordered pair <X,Y>, where X and Y are (not necessarily
finite) subsets of S; and defining (proto)semiquasiinferentiality of structures and
systems accordingly. Then it would be easy to show that the system <{A,B}, {{A},
{B}}> is quasiinferential, as it is determined by the structure constituted by the
following two quasiinferons:

< A;Bf g;∅>
<∅; A;Bf g>

This indicates that this last generalization of the concept of inference might be
ultimate, i.e. that it might enable us to encompass all kinds of semantics systems.9

We will prove this in the next section, where we will also investigate the hierarchy of
stricter levels of inferentiality.

5 The Hierarchy

Let us now repeat and extend the definitions we have given so far. To prevent our
terminology from becoming too cumbersome, we will use abbreviations: P for proto,
S for semi, Q for quasi and I for infer(ential).

Definitions Let S be a set. An element of Pow(S)×Pow(S) is called a SQI-on over S.
It is called a QI-on if it is an element of FPow(S)×FPow(S) (where FPow(S) is the set
of all finite subsets of S), it is called an SI-on if it is an element of Pow(S)×S and it is
called an I-on if it is an element of FPow(S)×S. The ordered pair <S,⊢>, where ⊢ is a
set of SQI-ons (QI-ons, SI-ons, I-ons), will be called a PSQI-structure (PQI-
structure, PSI-structure, PI-structure). It is called a SQI-structure (QI-structure, SI-
structure, I-structure) iff ⊢ is finite. A SQI-on <X,Y> is said to exclude an element v
of {0,1}S iff v(B) = 1 for every B∈X and v(A)=0 for every A∈Y. A (P)(S)(Q)I-
structure <S,⊢> is said to determine a semantic system <S,V> iff V is the set of all
and only elements of {0,1}S not excluded by any element of ⊢. A semantic system is
called a (P)(S)(Q)I-system iff it is determined by a (P)(S)(Q)I-structure.

9 The generalization of the concept of inferon allowing for inferons with empty consequents is tantamount
to entering the concept of incompatibility; indeed the set A is incompatible iff A⊢. The introduction of
inferons with multiple consequents goes beyond this. (See [13].)
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All the concepts we have introduced give us the following hierarchy:

PSQI-system 

Diagram 1

 
PQI-system             PSI-system               SQI-system

      
PI-system               QI-system                SI-system 

 

I-system 

The arrows indicate containment in the sense that an arrow leads from a concept to
another one if whatever falls under the latter falls also under the former. What we are
going to prove now is that (i) every semantic system is a PSQI-system, (ii) the arrows in
the diagram capture all inclusions among the types of semantic systems listed on it, and
(iii) all the inclusions are proper. To be able to do this we need some more definitions.

Definition Let X and Y be subsets of a set S. The cluster over S generated by X and
Y, ClS[X,Y], will be the set of all elements of {0,1}S that map all elements of X on 1
and all elements of Y on 0. (Thus U is a cluster iff it contains, and hence is identical
with, ClS[T(U),C(U)].) A cluster U is called finitary iff both T(U) and C(U) are
finite; it is called inferential iff C(U) is a singleton.

Given these definitions, we can formulate the following lemma, the proof of
which is straightforward.

Lemma A semantic system <S,V> is

& a PSQI-system iff {0,1}S\V is a union of clusters
& a PQI-system iff {0,1}S\V is a union of finitary clusters
& a PSI-system iff {0,1}S\V is a union of inferential clusters
& a SQI-system iff {0,1}S\V is a union of a finite number of clusters
& a PI-system iff {0,1}S\V is a union of finitary inferential clusters
& a SI-system iff {0,1}S\V is a union of a finite number of inferential clusters
& a QI-system iff {0,1}S\V is a union of a finite number of finitary clusters
& a I-system iff {0,1}S\V is a union of a finite number of finitary inferential clusters

Proof Obvious.

To be able to formulate more useful criteria for categorizing semantic systems
into these categories, we need some more concepts:

Definition A semantic system <S,V> is called

& saturated iff V contains every v∈{0,1}S such that for every A∈C(v) there is a v′∈V
such that T(v)⊆T(v′) and A∈C(v′)
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& compact iff V contains every v∈{0,1}S such that for every finite X⊆T(v) and finite
Y⊆C(v) there is a v′∈V such that X⊆T(v′) and Y⊆C(v′).

& co-compact iff V contains no v∈{0,1}S such that for every finite X⊆T(v) and finite
Y⊆C(v) there is a v′∉V such that X⊆T(v′) and Y⊆C(v′).

& compactly saturated iff V contains every v∈{0,1}S such that for every finite
X⊆T(v) and every A∈C(v), there is a v′∈V such that X⊆T(v) and A∈C(v).

With the help of this conceptual machinery, we can formulate and prove the
following theorem:

Theorem 3 A semantic system <S,V> is

1. always a PSQI-system;
2. a PQI-system iff it is compact;
3. a PSI-system iff it is saturated (this restates Theorem 2);
4. a SQI-system only if it is co-compact;
5. a PI-system iff it is compactly saturated (this restates Theorem 1);
6. a SI-system only if it is saturated and co-compact;
7. a QI-system only if it is compact and co-compact;
8. a I-system only if it is compactly saturated and co-compact.

Proof

1. It is clear that any set consisting of a single valuation is a cluster; hence any set
of valuations is a union of clusters.

2. A semantic system <S,V> is a PQI-system iff {0,1}S\V is a union of finitary
clusters. This is to say that it is a PSI-system iff for every v∈{0,1}S\V there is a
finite set X⊆T(v) and a finite set Y⊆C(v) such that {0,1}S\V contains the whole
cluster ClS[X,Y], i.e. iff for every v∉V there are finite sets X⊆T(v) and Y⊆C(v) such
that V does not contain any v′ such that X⊆T(v′) and Y⊆C(v′). By contraposition,
<S,V> is a PQI-system iff the following holds: given a valuation v, if for every
finite sets X⊆T(v) and Y⊆C(v) there is a valuation v′∈V such that X⊆T(v′) and
Y⊆C(v′), then v∈V. But this is clearly the definition of compactness of V.

3. See proof of Theorem 2 (though now it can be brought to a form
straightforwardly parallel to that of 2. above).

4. A semantic system <S,V> is a SQI-system iff {0,1}S\V is a finite union of
clusters, i.e. iff there is a finite set I and two collections <Xi>i∈I and <Yi>i∈I
of subsets of S so that f0;1gSnV ¼ S

i2I ClS X
i;Y i½ �. This is the case iff V

is the complement of
S

i2I ClS X
i;Y i½ �, hence iff V ¼ T

i2I ClS X i; Y i½ �. But
as C1S X i; Y i½ � ¼ v j X i � TðvÞ and Y i � CðvÞf g, ClS X i; Y i½ �¼ v j X i�= TðvÞ orf
Y i�= CðvÞg¼ v j X i \ CðvÞ 6¼ ∅ or Y i \ TðvÞ 6¼ ∅g ¼ v j X i \ CðvÞ 6¼ ∅f g[f
v j Y i \ TðvÞ 6¼ ∅f g ¼ S

x2X i v j x 2 CðvÞf g [S
y2Y i v j y 2 TðvÞf g ¼ S

x2X i ClS ∅;½
xf g� [S

y2Y i ClS yf g;∅½ �. Hence V ¼ T
i2I

S
x2X i ClS ;; xf g½ �� �[S

y2Y i ClS yf g;;½ �

Inferentializing Semantics 265 Author's personal copy 



and using the generalized deMorgan law saying that
T

i2I
S

j2Ji Z
j
i ¼

S
f 2F

T
i2I Z

f ðiÞ
i , where

F is the set of all functions mapping elements of I on elements of respective sets J i, we
reach V ¼ S

f 2F
�T

i2f þ ClS f ðiÞ;;½ � [T
i2f �ClS ;; f ðiÞf½ �

�
, where F is the set of all

functions mapping every element i∈I on an element f (i)∈ X i∪Y i, and f þ resp. f − is the
set of all those elements of I that f maps on elements of X i resp. Yi. It further
follows that V¼S

f 2F ClS X f ; Y f
� �

, where X f ={f (i)|i∈f þ}and Y f ={ f(i) | i∈f −}.
As both f þ and f −are finite, this means that V is a union of finitary clusters
and by the same line of reasoning as employed in the proof of 2. above, we
reach the conclusion that <S,V> is co-compact.

5. See proof of Theorem 1 (though again, now it can be brought to a form
straightforwardly parallel to that of 2. above).

6.-8. are obvious consequences of 1.-3. □

Now we will give examples of semantic systems that witness the properness of all
the inclusions on Diagram 1. Before we do so, however, some more definitions:

Definitions A valuation is called full if it maps every sentence on 1. (In other words,
the full valuation is S.) A valuation is called empty if it maps every sentence on 0. (In
other words, the empty valuation is ∅.)

Now let S be infinite; and let us consider the following list of semantic systems:

& Σ1 = <S, {v∈Pow(S) | T(v) is finite}>
& Σ2 = <S,{∅}>
& Σ3 = <S, {v∈ Pow(S) | C(v) is finite}>
& Σ4 = <S, Pow(S)\{S}>
& Σ5 = <S,{S}>
& Σ6 = <{A,B},{{A},{B}} >
& Σ7 = <S, {v∈Pow(S) | C(v) = A}> for some fixed A∈S
& Σ8 = <<{A,B},{{A,B},{B}} >>

Theorem 4

& Σ1 is a semantic system, and hence a PSQI-system, that is neither a PSI-system,
nor a PQI-system, nor an SQI-system.

& Σ2 is a PQI-system that is neither a PI-system, nor a QI-system.
& Σ3 is a PSI-system that is neither a PI-system, nor an SI-system.
& Σ4 is a SQI-system that is neither an SI-system, nor a QI-system.
& Σ5 is a PI-system that is not an I-system.
& Σ6 is a QI-system that is not an I-system.
& Σ7 is an SI-system that is not an I-system.
& Σ8 is an I-system.
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Proof
Σ1 is not saturated, for V does not contain the full valuation, which is the

supervaluation of the empty set, hence it is not a PSI-system. It is not compact,
because V does not contain the full valuation, but for every finite subset X of S it
contains a v′ such that X = T(v′); hence it is not a PQI-system. Moreover, it is not co-
compact, for V contains the empty valuation, but as V cannot contain any valuation
mapping only a finite number of sentences on 0, for every finite subset Y of S there is
a v′∉V such that Y = C(v′). Hence it is not an SQI-system.

Σ2 is a PQI-system, for it is determined by the infinite set of QI-ons {<{A},∅> | A∈S}.
However, is not saturated, for V does not contain the full valuation, hence it is not a P(S)I-
system. Also it is not co-compact, for V contains the empty valuation, whereas for every
finite subset Y of S there is a v′∉V such that Y = C(v′); hence it is not a (S)QI-system.

Σ3 is a PSI-system, for it is determined by the infinite set of SI-ons {<X,∅> | X⊆S
and X is finite}. However, it is not compact, because V does not contain the empty
valuation, but for every finite subset Y of S it contains a v′ such that Y = C(v′); hence
it is not a P(Q)I-system. Moreover, it is not co-compact, for V contains the full
valuation, whereas for every finite subset X of S there is a v′∉V such that X = T(v′);
hence it is not an S(Q)I-system.

Σ4 is an SQI-system, for it is determined by the SQI-on <S,∅>. However, it is not
saturated, for V does not contain the full valuation, hence it is not a (P)SI-system. It
is not compact, because V does not contain the full valuation, but for every finite
subset X of S it contains a v′ such that X = T(v′); hence it is not a (P)QI-system.

Σ5 is a PI-system for it is determined by the infinite set of I-ons {<∅,{A}> | A∈S}.
But it is not co-compact, for V contains the full valuation, whereas for every finite
subset X of S there is a v′∉V such that X = T(v′); hence it is not a (S)(Q)I-system.

Σ6 is a QI-system for it is determined by the finite set of QI-ons {<∅,{A,B}>,
<{A,B},∅>}. But it is not saturated, for the supervaluation of V is the empty
valuation, hence it is not a (P)(S)I-system.

Σ7 is an SI-system for it is determined by the single SI-on <S\{A},A>. But it is
not compact, for V contains, for every finite subset Y of S\{A}, a v′ such that T(v′) =
Y and C(v′) = A. Hence it is not a (P)(Q)I-system.

Σ8 is an I-system, for it is determined by the I-ons <∅,{B}>. □

On the following modification of Diagram 1, each type of semantic system is
complemented by an example of a system which is of this type, but of no lower one:
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6 Structured Systems of Sentences

So far we have been dealing with semantic systems and inferential structures based
on unstructured sets of sentences. A more interesting case, however, is when the set
of sentences is generated from a basic vocabulary by some grammatical rules, and
hence its elements have a grammatical structure. Only in this case we can formulate
inferential rules logic is interested in.

A plausible explication of the concept of language would be a finite collection of
finite sets (of words) and a collection of rules generating complex expressions and
especially sentences. Sentences thus generated have structures that reflect the ways
they are generated from words. If we replace some of the words they consist of by
parameters, we obtain sentence forms. A sentence form has as many instances as
there are sentences that can be obtained from it by substituting words of appropriate
categories for all its parameters. In this way, a form may let us address an infinite
number of sentences in one sweep.

Here we will adopt a much more simplified explication: we will identify forms
simply with arbitrary sets of sentences. Thus we will consider language as a set of
sentences plus a set of its subsets considered as forms of sentences. Hence the
following definitions:

Definition A language is an ordered pair <S,F>, where S is a set (the elements of
which are called sentences) and F⊆Pow(S) (the elements of this set are called forms of
sentences). An instantiation over <S,F> is any function i from F to S such that for
every f∈F, i( f )∈f; i( f ) is then called the i-instance of f. A generalized semantic system
is an ordered pair <<S,F>,V> such that <S,F> is a language and <S,V> is a semantic
system. A pair of subsets of F∪S is called a parametric SQI-on, or pSQI-on over
<S,F>; the concepts of pQI-on, pSI-on and pI-on are defined analogously. (It follows
that every (S)(Q)I-on over S is a p(S)(Q)I-on over <S,F>.) The pair <<S,F>,⊢>, where
<S,F> is a language and ⊢ is a (finite) set of p(S)(Q)I-ons over <S,F>, is called a p(P)
(S)(Q)I-structure. It is called a (P)(S)(Q)I-structure, iff <S,⊢> is a (P)(S)(Q)I-structure
(which means that ⊢ consists exclusively of nonparametric (S)(Q)I-ons).

The i-instance of a p(S)(Q)I-on, for an instantiation i, is the (S)(Q)I-on which arises
from it by the replacement of forms by their i-instances. The p(S)(Q)I-on excludes
those and only those valuations of S that are excluded by some of its instances. A
generalized (p)(P)(S)(Q)I-structure is said to determine a generalized semantic system
<<S,F>,V > iff V is the set of all and only elements of {0,1}S not excluded by any
element of ⊢. If <<S,F>,V > is determined by a (p)(P)(S)(Q)I-structure, it is called a (p)
(P)(S)(Q)I-system. (We will drop the adjective generalized when the context makes it
clear that we are dealing with generalized structures and systems.)

Considering generalized semantic systems and entering the concepts of p(P)(S)
(Q)-systems provides for a substantial refinement of Diagram 1, doubling the
number of categories. However, the following simple theorem will provide for its
simplification.

Theorem 5 <<S,F>,V> is a p(S)(Q)I-system if it is a (S)(Q)I-system and only if it is
a P(S)(Q)I-system, but both the inclusions are proper.
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Proof As a (S)(Q)I-on is a special case of a p(S)(Q)I-on, a (S)(Q)I-system is trivially
a p(S)(Q)I-system. On the other hand, as a valuation is excluded by a pSQI-on iff it
is excluded by one of its instances, a pSQI-on is, in this respect, wholly replaceable
by the set of all SQI-ons that are its instances. Hence if we are free to use an infinite
number of SQI-ons, we can do any job done by pSQI-ons with SQI-ons.

Now consider the system <<S,{S}>,{∅}>, where S is infinite. It follows from
Theorem 4 that it is not an SQI-system. However, it is a p(S)QI-system, for it is
determined by the single p(S)QI-on <S,∅>. Hence not every SQI-system is a pSQI-
system. Consider, in turn, the system <<S,∅>,{∅}>. It is a P(S)QI-system, for it is
determined by the infinite set of (S)QI-ons {<{A},∅> | A∈S}. But <<S,∅>,{∅}> is
obviously a SQI-system just in the case <S,{∅}> is, which we know it is not. Hence
not every P(S)(Q)I-system is a p(S)(Q)I-system. □

Hence the reduced refinement of the Diagram 1 brought about by engaging the
parametric versions of (S)(Q)I-ons is the following:

If what we want to study are logical systems, then what we are interested in are
general rules, and hence systems that allow for parametric SQI-ons—i.e. we
should concentrate on the kinds of systems with “p” in their category name.
Alongside this, we are usually interested in systems that can be determined by a
finite number of such rules—i.e. we should concentrate on those without “P” in
their category name. This leaves the following four highlighted categories in the
focus of our attention:
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Let us consider some, now more realistic, examples of systems which fall into
these categories.

ΣCPC is the semantic system <<S,F>,V> of classical propositional logic, where S
is the set of wffs of propositional logic, F is a set of sets of instances of
corresponding schemata, and V is the set of all those valuations of the set that do
justice to all the truth tables of the classical connectives.

ΣCPC* is the semantic system <<S,F>,V> of classical propositional logic, where S
and F are as before and V is the set of all those valuations of the set that map all
axioms of a system of classical propositional logic on 1 and map a b on 1 whenever
there is an a so that a and a→b are mapped on 1. (Note that this system, as well as
the following one, admits the full valuation; this valuation is then usually excluded
‘manually’, by introducing the concept of consistency and banning inconsistent
valuations.)

ΣIn is the semantic system <<S,F>,V> of intuitionist propositional logic, where S
and F are as before and V is the set of all those valuations of the set that map all
axioms of a system of intuitionist logic on 1 and map a b on 1 whenever there is an a
so that a and a→b are mapped on 1.

ΣA is the semantic system <<S,F>,V> of standard arithmetic, where S is the set of
wffs of Peano arithmetic, F is a set of sets of instances of corresponding schemata
and V consists of the single valuation that maps a sentence on 1 iff it is true in the
standard model.

Theorem 6

1. ΣCPC is a pQI-system, but not a pI-system
2. ΣCPC* is a pI-system
3. ΣIn is a pI-system
4. ΣA is a pSQI-system, but neither a pSI-system, nor a pQI-system

Proof

1. ΣCPC is a pQI-system, for it is determined by the set of pQI-ons (we assume that
the primitive connectives are → and ¬; a and b are parameters, and we let
schemata stand for the sets of their instances): {<{a, a→b},{b}>, <{b},{a→b}>,
<∅,{a,a→b}>, <{a,¬b},∅>, <∅,{a,¬b}>}. However, it is not saturated: for any
atomic a it admits a valuation that maps a on 0 and one that maps ¬a on 0, but no
valuation that maps both a and ¬a on 0 is admissible; hence it is not a pI-system.

2. ΣCPC* is a pI-system, for it is determined by the set of pI-ons: {<{a, a→b},
{b}>, <∅ ,{a→(b→a)}>, <∅ ,{a→(b→c)→((a→b)→(a→c))>, <∅ ,
(a→b)→((¬a→b)→b)>}. (To talk more concisely, we will identify an axiom
of a logical system with the pI-on that has an empty antecedent and the axiom in
the consequent, and also we will identify an inference rule, such as modus
ponens, with the corresponding pI-on. In this way we can say simply that ΣCPC*

is determined by the axiomatic system of classical propositional logic.)
3. ΣIn is a pI-system, for it is determined by the axiomatic system of intuitionist

propositional logic. (Note that here we have nothing corresponding to the ‘non-
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axiomatic’ version of classical logic. Intuitionist operators do not have any truth
tables independent of the axiomatization of the logic.)

4. ΣA is a pSQI-system, for it is determined by the PQI-ons determining ΣCPC plus
the axioms of Peano arithmetic plus the pSI-on <{p(n)}n=1,...,∞,{∀xp(x)}>. It is
not a pSI-system, for it is not saturated (for the same reason as ΣCPC) and it is
not a pQI-system, for it is not compact: if p is a predicate such that ∀xp(x)
is undecidable, then for every finite set N* of numerals there is a valuation
mapping every p(n) on 1 for every n∈N* and ∀xp(x) on 0, whereas there is none
mapping p(n) on 1 for every n∈N and ∀xp(x) on 0. □

7 Consequence Revisited

If what we are interested in is the relation of consequence, then our classificatory
hierarchy is excessively fine-grained. In particular, we will show that a (p)(P)(S)QI-
system does not differ in this respect from the corresponding (p)(P)(S)I-system.
(Thus, for example the semantic systems ΣCPC and ΣCPC*, which differ just in this
respect, yield the same relation of consequence.)

Lemma Let V, V1, V2 be subsets of {0,1}
S such that V2 = V1∪V, where every element

of V is a supervaluation of a subset of V1. Then the consequence relations induced by
the systems <<S,F>,V1> and <<S,F>,V2> coincide.

Proof Let ⊨1 and ⊨2 be the consequence relations induced by <<S,F>,V1> and <<S,
F>,V2>, respectively. Let us assume that these relations are different, hence as it is
clear that ⊨2 ⊆ ⊨1, we have ⊨1 �= ⊨2. Then there is a subset X of S and an element A
of S so that X ⊨1 A, but not X ⊨2 A. This means that there must be a v∈V so that
v(B)=1 for every B∈X and v(A)=0. As v is the supervaluation of an U⊆V1, T(u)=
T(U), and hence every element of U maps every element of X on 1, and at least one
element of U maps A on 0. But then V1 contains a valuation that maps every
element of X on 1 and A on 0, which is a contradiction. □

Definition sv(U) will denote the supervaluation of the set U.

Lemma sv
S

i2I Ui

� � ¼ sv sv Uið Þf gi2I
� �

:

Proof Let sv
S

i2I Ui

� �
map an element A on 1. Then all elements of every Ui map

A on 1, hence all the supervaluations of the Ui’s map A on 1, and hence also
sv({sv(Ui)}i∈I) maps A on 1. Let sv

S
i2I Ui

� �
map an element A on 0. Then there is

a j so that Uj contains an element that maps A on 0. Hence sv(Uj) maps A on 0;
and hence so does sv({sv(Ui)}i∈I). It follows that sv

S
i2I Ui

� �
is the same function

as sv({sv(Ui)}i∈I). □

Lemma Let V, V1, V2 be subsets of {0,1}
S such that V2 = V1∪V, where V consists of

the supervaluations of all subsets of V1. Then <<S,F>,V2> is saturated.
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Proof Take an arbitrary U2⊆V2; we will show that sv(U2)∈V. As V2 = V1∪V, there
must be sets U1 and U so that U1⊆V1, U⊆V, and U2 = U1∪U. According to the
previous lemma, sv(U2) = sv({sv(U1),sv(U)}). As V consists of supervaluations of
subsets of V1 and as U⊆V, there must exist, for every u∈U, a Uu⊆V1 so that u =
sv(Uu). Hence according to the previous lemma, sv Uf g ¼ sv

S
u2U Uu

� �
, and as

every Uu is a subset of V1, sv{U} is a supervaluation of a subset U* of V1. Hence
sv(U2) = sv({sv(U1),sv(U*)}), where both U1 and U* are subsets of V1. But
according to the previous lemma, sv(U2) = sv(U1∪U*) and so sv(U2) is the
supervaluation of a subset of V1 and thus is an element of V. □

Theorem 7 For every (p)(P)(S)QI-system there exists a (p)(P)(S)I-system with the
same relation of consequence.

Proof Let <<S,F>,V1> be a (p)(P)(S)QI-system. Let V2 be V1 extended by the
supervaluations of all its subsets. Then, according to the first of the above lemmas, <<S,
F>,V2> yields the same consequence relation as <<S,F>,V2>, while being, according
to the third lemma, saturated. Hence it is a (p)(P)(S)I-system. □

This gives us the following reduced version of Diagram 2:

De-highlighting the less interesting cases as in case of Diagram 2, we are left with
only two important ones:
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The p(Q)I case is exemplified by any fully axiomatized system (however, ΣCPC is
also such a system). The pS(Q)I case is exemplified by the standard model
arithmetic, the delimitation of which requires the omega rule.

8 Conclusion and directions of further development

I hope to have shown how we can set up a useful framework for a systematic
‘measurement’ of how powerful various generalizations of the straightforward
inferential framework are from the viewpoint of explicitly semantic frameworks; and
that I have also indicated that this framework lets us prove some nontrivial and
interesting results. There are, however, still many ways in which this framework
calls for elaboration. Let me indicate at least three:

1. What axiomatic systems were developed for was not determining the semantic
systems in our sense, but rather only capturing the corresponding sets of tautologies.
This may lead us to the following concept: a semantic system is a t(p)(P)(S)(Q)-
system iff there is a (p)(P)(S)(Q)-system with the same set of tautologies. Thus, for
example, the system ΣCPC, though we saw it is not a pI-system, is a tpI-system.
(The reason is that the system ΣCPC*, which is a pI-system, shares the same set of
tautologies.) It might be both interesting and useful to fully incorporate the
concepts of t(p)(P)(S)(Q)-systems into our hierarchy.

2. The reader may have noticed that I have picked up examples from calculi of
propositional logic and then skipped over those of predicate logic directly to a
specific theory within predicate logic, namely arithmetic. The reason is that the
general languages of predicate logic still escape our hierarchy. For consider all
the valuations that are induced by interpretations of the language of the classical
predicate calculus in all kinds of model structures. If we restricted ourselves to
interpretations which leave no individuals nameless, the situation would be
straightforward: it would be enough to add the pI-on <{∀xp(x)},{p(n)}> and the
pSI-on <{p(n)}n∈N,{∀xp(x)}>} to the PQI-ons determining the semantics of
classical propositional logic, where N is the set of all names (terms) of the
language. (Arithmetic is a special case of this: we have the universe of numbers
and have a numeral for each of them.) However, if we allow for all
interpretations admitted by the standard model theory for first-order logic,
including those that may leave some of the elements of the universe nameless,
the situation is much more complicated. The point is that now there are
admissible valuations that map all instances of a general statement on 1, but the
general statement itself on 0. (This is the case when all the counterexamples are
nameless.) However, this does not mean that we can simply omit the
corresponding pSQI-on <{p(n)}n∈N,{∀xp(x)}>} without a replacement. Some
valuations mapping all instances on 1 and the corresponding generalization on 0
must still be rendered inadmissible—for example those with p(x) logically valid.
The way to accomplish this that follows the standard strategy employed by the
axiomatizations of the first-order predicate calculus would be to include the
requirement that if A is mapped on 1 by every admissible valuation, then so is
∀xA—but this cannot be directly articulated in terms of our pSQI-ons.
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3. Our explication of the concept of language, as we have pointed out, is an
essential oversimplification. Whereas to any language in the more adequate
sense outlined above (a finite vocabulary plus a finite collection of
grammatical rules) there corresponds a language in our oversimplified sense,
the converse is not the case. Hence our explication overgenerates and leaves
room for amendments.
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