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Abstract:  The usual way of interpreting Gödel's (1931) incompleteness result is as showing 
that there is a gap between truth and provability, i.e. that we can never prove everything that is 
true. Moreover, this result is supposed to show that there are unprovable truths which we can 
know to be true. This, so the story goes, shows that we are more than machines that are 
restricted to acting as proof systems. Hence our minds are 'not mechanical'. 

 In this paper I would like to indicate that this interpretation of Gödel goes far beyond what 
he really proved. I would like to show that to get from his result to a conclusion of the above 
kind requires a train of thought which is fuelled by much more than Gödel's result itself, and 
that a great deal of the excessive fuel should be utilized with an extra care. 

1. Incompleteness theorem: a 'boringly technical' formulation 
 
There are many ways in which we can present Gödel's incompleteness result. Let us, first, do 
it in a bluntly technical way. 
 Let A be an alphabet (a finite set of objects) and let L be a set of strings over A. Let M  be 

a set of subsets of L. Where x and y are strings over A (especially elements of L), let x∩y 
denote the concatenation of x and y;  and let x =M y state that for every m∈M it is the case 

that x∈m iff y∈m (i.e. that either both x and y are members of m or none of them is). Let us, 
moreover, say that x is M-persistent iff x belongs to the intersection of M (i.e. x∈m for every 
m∈M). Let us pick up an element a∈A  and let us call a set s of strings over A a-open iff s 

contains no string x together with a∩x; and let us call it a-saturated iff it contains a∩x 
whenever it does not contain x. Let there exist a binary operation ⊕ such that for every x,y∈L 
it is the case that  
 

 (*) (a∩x)⊕y =M a∩(x⊕y) 
 
                                                      
*  Work on this paper has been supported by the Research Grant No. 401/04/0117 of the Grant 
Agency of the Czech Republic. I am grateful to Jaroslav Zouhar for critical comments. 
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and for every x∈L there is a y∈L so that 
 
 (**) x⊕y =M y  
 
Moreover, let there exist a b∈L so that for every x∈L   
 
 (***) b⊕x is M-persistent iff x is. 
 
 Then it is easy to see that if the intersection of M is a-open, then it is not a-saturated. For 

let c be the element of L for which (a∩b)⊕c =M c (its existence is guaranteed by (**)). c is 

obviously M-persistent iff (a∩b)⊕c is, and hence, in force of (*), iff a∩(b⊕c) is. Moreover, 

in force of (***), c is M-persistent iff b⊕c is; hence a∩(b⊕c) is M-persistent iff b⊕c is. This 

means that the intersection of M contains either both a∩(b⊕c) and b⊕c, or none of them. And 
this entails that if it is a-open, hence it does not contain both of them, then it must contain 
none of them, hence not be a-saturated. 
 Now one of the way of presenting Gödel's results would be saying that it is a matter of 
demonstration that the language of PA constitutes a special case of this pattern, in the 
following sense. Take A to be the vocabulary of the language of arithmetic and L the set of its 
well-formed formulas. Take M to be the set of all consistent theories in L containing the 
axioms of Peano (or, for that matter, Robinson) arithmetic (so that the relation =M comes out 
as logical equivalence). Take a to be the negation-sign (so that an a-open set is a consistent 
theory and a-saturated set a complete theory). Let  x⊕y be the result of substituting the Gödel 
number of y for the single free variable of x (if there is a single free variable of x, otherwise let 
x⊕y be simply y); then it is clear that (*) holds and also it can be proved that (**) holds1.  
 Moreover, there provably exists a formula b with one free variable (and who is familiar 
with Gödel's proof knows that it is the formula Pr(x) where Pr is the provability predicate) so 
that for every formula x, b⊕x is M-persistent (i.e. provable) iff x is. Thus, also (***) holds; 
and hence it follows Peano (or Robinson) arithmetic (and, by way of generalization, any its 
consistent axiomatic extension) cannot be complete. (Hence, let us notice, the problem is that 
there exists the fix point of the unprovability predicate, a statement which, in effect, says I am 
unprovable.) 
 This is a rather boring formulation of Gödel's result; and it seems very unlikely that spelled 
out in this way it would catch the attention of anybody outside the field. To become, as it did, 
one of the most discussed intellectual challenges of the twentieth century, it must be 
approached from a very different side, namely via some 'intellectually exciting interpretation'.  
 
 
                                                      
1  This is the fix point theorem which was not originally proved by Gödel in its generality, 
which, however, has later found its way into the standard exposition of the incompleteness result. (See 
Gaifman, 2006.)  
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2. Incompleteness theorem: an 'intellectually exciting' interpretation 
 
As a matter of fact, thrilling, mind-blowing or astonishing interpretations of the 
incompleteness phenomenon are dime a dozen. Let me mention only one of the earliest and 
most popular ones, due to the mathematician J. R. Lucas (1961, 112)2:  
 

Gödel's theorem seems to me to prove that Mechanism is false, that is, that minds 
cannot be explained as machines  

 
Far from being of interest only for narrow specialists, this interpretation ascribes to Gödel's 
result the power of deciding one of the most irritating conundrums mankind has ever 
considered: namely can there be a mechanical mind?  
 How is this possible? How do we (and do we at all?) get from the 'boring' theorem itself to 
such an exciting interpretation? A usual train of thought that is supposed to get us there is 
approximately the following: 
 
1. Gödel showed that any reasonable axiomatic theory of arithmetic contains an I-am-

unprovable-statement, a statement claiming of itself that it is unprovable, and that this 
statement can be neither provable, nor refutable.  

2. But then what the statement says is true, and hence there is a statement which is true, but 
unprovable. 

3. Hence, as we know that the I-am-unprovable-statement is true, we can know something 
which we cannot prove. 

4. Hence, we have methods of reaching (mathematical) truth beyond proof. 
5. Hence, we, humans, can reason in a way no machine will ever be able to. 
 
 
3. What exactly did Gödel prove? 
 
Before we can evaluate the soundness of the above train of thought, let me recapitulate the 
bulk of Gödel's result in more familiar words. As is well known, Gödel pointed out that there 
exists an effective one-to-one assignment of natural numbers (and hence numerals) to 
formulas and sequences of formulas of PA (we will speak, as usual, about their Gödel 
numbers); and showed that given such an enumeration, we can define a predicate Prf so that  
 
 1. if m is the number of a proof of the formula with the number n, then Prf(m,n) is 
provable in PA (where m and n are the numerals standing for the numbers m and n, 
respectively); and 
 2. if m is not the number of a proof of the formula with the number n, then ¬Prf(m,n) is 
provable. 
 
Provided that PA is consistent, and hence that the provability of ¬Prf(m,n) excludes the 
provability of Prf(m,n), it is obviously the case that Prf(m,n) is provable if and only if m is 
the number of a proof of the formula with the number n. Now defining Pr(x) as ∃yPrf(y,x) 
yields us: 
                                                      
2  There are lots of others; the most popular being probably Penrose (1989). 
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 3. If the formula with a number n is provable, then there is an m so that Prf(m,n), and 
hence Pr(n), is provable. 
 4. If the formula with the number n is not provable, ¬Prf(m,n) is provable for every m, and 
provided PA is ω-consistent (which means that for no formula F[x] it can contain ¬F[n] for 
every numeral n while containing ∃xF[x]), ∃xPrf(x,n), and hence Pr(n), is not provable. 
 
This means that provided ω-consistency, a formula with the number n is provable iff Pr(n) is 
provable.  
 Moreover, Gödel showed that there is a formula G, our I-am-unprovable-statement, such 
that the equivalence G ↔ ¬Pr(g), where g is the Gödel number of G, is provable in PA. 
Hence G 'says of itself' that it is unprovable. This implies that ¬G is provable iff Pr(g) is and 
as the last formula is, as we saw, provable iff G is, ¬G is provable iff G is. As a result, neither 
G, nor ¬G can be provable - in pain of the inconsistency of PA.  
 Furthermore, as G says of itself that it is unprovable and it is indeed unprovable, it appears 
to be true, hence it is the instance of a true, but unprovable sentence. 
 Let us, at this point, also stress what is not the case: 
 
 5. It is not the case that whenever f is the number of a formula F, the equivalence 
F ↔ Pr(f) is provable. If this were the case, PA would be inconsistent, for this would yield 
the provability of G ↔ Pr(g) (where g is the numeral for the Gödel's number of G), whereas 
we know that Pr(g) ↔ ¬G is provable. 
 6. It is not even the case that ¬Pr(n) is provable for all numbers n of unprovable 
formulas3. If this were the case, it would be the case that the unprovability of G would yield 
the provability of ¬Pr(g), which, as we know, yields the provability of G. 

                                                     

 
We should not forget that this result was achieved with the help of the assumption of ω-
consistency (we need not list consistency as a further assumption, for it follows from ω-
consistency). However, this assumption is not essential; it turned out that by a modification of 
the proof this assumption can be discarded in favor of simple consistency4.  
 However, the assumption of consistency is persistent, we cannot get rid of it. Does this 
compromise the result? What if PA is not consistent?  
 I think that though we do not have (and in fact cannot have5) a formal proof of it, it is 
reasonable to take it for consistent. Some theoreticians would claim that its consistency is 
demonstrated simply by the fact of the existence of the standard model; but this may be seen 
as problematic, for we cannot really construct the model, but only either prove its existence 
within set theory (the consistency of which is itself a problem), or simply claim that they 
know that it exists in force of the fact that we can see it within a Platonist heaven where it is 

 
3  In fact we can prove ¬Pr(n) for not a single n; for proving that there is an unprovable 
formula would amount to proving that PA is consistent, which  Gödel's result entails to be impossible. 
4  This was shown by Rosser (1936). 
5  One of the consequences of Gödel's result is that a theory cannot prove its own consistency, 
it can be proven only within another theory. But if this theory is stronger, it would be in the need of a 
consistency proof itself; whereas if it is weaker, it would lack the means needed to carry out the proof. 
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located6. However, I think that the more straightforward reason is that the axioms of PA are 
genuine axioms in the original sense of the word: they are formulas which capture our 
arithmetical intuitions that are so fundamental that it would be hard to even say what it would 
mean to reject them; and also the inference rules are clearly truth-preserving7. 
 
 
4. Is there a gap at all? 
 
The existence of G, of the I-am-unprovable-statement, seems to document the gap between 
truth and provability: G is true (and, moreover, is recognizable as true by us), but it is not 
provable. I will be arguing that the nature of the gap might involve more than meets the eye; 
but before I do so, it might be good to preempt a possible objection from the opposite side, 
namely the objection that the whole gap is a mere illusion. The point is that in so far as we 
understand PA as a first-order theory, G is in fact not (unconditionally) true - for it is true in 
some models of PA while false in others. Hence could it not be the case that our conclusion 
that G is true was simply mistaken? 
 Suppose – and disregard the apparent oddity of the idea for a moment – that beside the 
genuine natural numbers there are also certain fake natural numbers which are somehow very 
good in hiding among the genuine ones so that we have difficulties to tell the two kinds of 
numbers apart. Suppose that Prf holds between one of these numbers and the number f of a 
formula F of PA. Then we will conclude that ∃xPrf(x,f), and hence Prf(f). We will conclude 
that F is provable, but we will be mistaken, for there will be no genuine natural number, i.e. a 
potential number of a proof, related to f by Prf.  
 Now return to the reasons which made us believe that G was true. The basic reason was 
that we believed that G were saying of itself that it is unprovable, i.e. that ¬∃xPrf(x,g)↔G. 
But provided the possibility outsketched above, ¬∃xPrf(x,g) might be false even if there is no 
proof of G – hence G does not say of itself that it is unprovable, but merely that it is 
'unquasiprovable' (where not everything that is quasiprovable is provable, hence it is not the 
case that something is unquasiprovable if it is unprovable). In such a case, G might not be 
unambiguously true – it would say something that might be, provided G is unprovable, true or 
false depending on whether some of the fake numbers manage to sneak in among the genuine 
ones. 
 To be sure, this sounds like a fairy tale. But in fact understanding PA as a first-order theory 
leads to a tale very similar to this one. As was shown also by Gödel (1930), every first order 
theory must have a model, and so the first-order formulation of PA is bound to have more 
than one model, and consequently it must have models containing, besides the genuine 
(standard) numbers also the fake (nonstandard) ones. Hence there will be a model in which G 
                                                      
6  Some theoreticians argue that this was the view of Gödel himself, and indeed some claims 
of Gödel indicate that such 'Platonist extremism' was not alien to him. On the other hand, as Feferman 
(2006) points out, things are not this simple, for Gödel might be found to make also blatantly anti-
Platonist claims, e.g.: ‘if interpreted as meaningful statements, [these axioms] necessarily presuppose a 
kind of Platonism, which cannot satisfy any critical mind and which does not even produce the 
conviction that they are consistent’. See also Potter (2001). 
7  Note that just as in case somebody were to dispute whether a prototypical example of a tree 
is really a tree, we would have to see it as undermining the very concept of tree, we would have to see 
disputing the consistency of axioms of this kind as undermining the very concept of consistency. 
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is true, but also a model in which G is false (and the latter one is bound to contain the non-
standard numbers). In other words, we must have a model of PA+{G} as well as a model of 
PA+{¬G}. 
 Why should we believe that we cannot tell the standard numbers from the nonstandard 
ones? Because, someone would insist, this is a provable fact. And indeed, it is a provable fact, 
if we take PA to be a first-order theory. But why should we take PA as a first-order (rather 
than second-order) theory? Because, someone might want to answer, (standard8) second-order 
logic is not a real logic, for it lacks complete axiomatization – and as Gödel's proof builds on 
the axiomatization of arithmetic, an unaxiomatizable logic is out of the question. 
 But this answer misconstrues the proposal to base arithmetic on second-order logic. 
Gödel's system is, of course, about the axiomatic system of PA, and hence it is axiomatics that 
we must focus on even in the second-order case. The significant difference consists in 
semantics – namely in the fact that the second-order axiom of induction, in contrast to the 
first-order one, is taken to exclude all non-standard models; and that hence in second-order 
PA, there is no model of PA+{¬G}. As a result, G may be seen as unambiguously true, viz. 
true in the single model of PA. Hence the difference between the first-order and the second-
order PA is precisely in that the latter allows for an unprovable truth9. 
 Hence there appears to be no reason not to understand the intuitive PA as a second-order 
theory (save for the reason that going second-order does not mean any substantial gain in 
what we can prove, and thus form the viewpoint of proving it may be better to stay on the 
simpler first-order level). The question of the proper framework for explicating intuitive 
arithmetic is complicated and it need not have a unique, context-independent answer; but be it 
as it may, claiming that G is not true in force of the fact that there must be a model of 
PA+{¬G} is unwarranted – there need not be one. 
 
 
5. Why is the undecidable formula true? 
 
Does all of this mean that the gap between truth and proof – the existence of a discoverable 
but unprovable truth – is a brute fact? Here we must be careful. A student of Gödel's proof 
comes to see that G is true, and she comes to see that it is unprovable. But how does she 
manage to see that it is true? Well, because Gödel demonstrates it – he puts forward a 
transparent chain of reasons leading from the obvious to the truth of G. But is "a transparent 
chain of reasoning", after all, not what a proof amounts to?  
 Let us recapitulate the way in which we reach the conclusion that G, i.e. our I-am-
unprovable-statement, is true. It is true because  
 (a) it says of itself that it is unprovable, and  
 (b) it is indeed unprovable. 
Why is (a) the case? The reason obviously is that  
                                                      
8  For the relevant difference between first-order and second-order logic see Peregrin (1997). 
9  The nature of the difference may become clearer if we see it not as one between first-order 
and second-order logic (or arithmetic), but rather one between the Henkinian and the standard version 
of second-order logic (where the former is known to be reducible to the first-order case). See Peregrin 
(ibid.) 
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 (aa) In PA, we can prove that G is equivalent to the formula stating that the number 
assigned to G does not have the property possessed by all and only numbers of provable 
formulas have (|--PA ¬Pr[g]↔G) 

(b), on the other hand, is the case because  
 (ba) the provability of G implies its refutability (provability of ¬G); whereas  
 (bb) PA is consistent. 
Further, (ba) is the case because  
 (baa) the provability of G (|--PA G) implies the provability of the claim that the number 

assigned to G belongs among the numbers of provable formulas (|--PA Pr[g]); and 
  (bab) the claim that the number assigned to G belongs to the numbers of provable formulas 

(|--PA Pr[g]) implies the provability of the negation of G (|--PA ¬G) 
 (baa) is the case because of the way Pr is constructed; 
 (bab) follows from (aa); 
Now (bb) is the case because 
 (bba) the axioms of PA are true (of the standard model) and its inference rules are truth-

preserving. 
And we could go into greater details. 
 
Disregarding all simplifications, this looks as a proof - if anything does! Hence it would seem 
we are, after all, capable of proving G. Of course, it is not a proof in the sense of proof 
considered by Gödel; hence in order not to cause a confusion, we will call it a demonstration. 
But could it not be, then, that the sense of the term proof considered by Gödel is suspect? 
 
 
6. Proving the unprovable? 
 
It is a plain fact that we can demonstrate the truth of G, and hence prove it in the intuitive 
sense of the word. To be sure, we are not able to do it wholly within PA, for the demonstration 
requires to step out of PA and look at it, as it were, 'from outside'. Is the demonstration of G 
that convinces us that G is true, 'unformalizable' (and thus perhaps achievable somehow 
exclusively within the medium of human mind)? Not really. In fact, we can consider various 
kinds of (quasi)formal versions of demonstrations of G. 
 1. First, let us notice that we can prove G in PA+{G}. This is, of course, an utterly trivial 
observation; but it is worth stating, for it points out that there is no one true formula of 
arithmetic which could not be proved in an extension of PA. In other words, we can prove any 
true arithmetical formula in an axiomatic system of arithmetic. (The only problem is that 
there is, of course, no system in which we can prove every such proposition.) 
 2. More substantially, we can see that every true arithmetical formula could be proven  in a 
system with a 'quasirule', such as the ω-rule:  
 
 F[0], F[1], F[2], ... |-- ∀xF[x].  
 
The point is that if we accept this as a rule of proof, we can arguably wholly imitate the 
definition of the truth-in-the-standard-model in terms of provability, and hence reach the 
coincidence of truth and provability10. 
                                                      
10  See also Peregrin (2006).  
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 (To avoid misunderstanding let us return to our description of Gödel's proof. There we 
remarked that if it were the case that ¬Pr(n) were provable for all numbers n of unprovable 
formulas, the unprovability of G would yield the provability of G, whereas the ω-rule now 
seem to guarantee that ¬Pr(n) is provable for all numbers n of unprovable formulas. So do 
we not end up in a contradiction? No; for adding the ω-rule to our rules of proof would 
compromise the original predicate Pr. It would no longer be the case that Pr(n) would be 
provable for every number n of a provable formula; and, more importantly, no predicate 
which would do better that Pr in this respect would be available. Gödel's proof is based on the 
assumption that provability is finitary and hence capturable by the means of PA; and once we 
elevate this restriction, it is no longer reproducible.) 
 It is, to be sure, quite dubious to call a system with the ω-rule a system of rules of proof: 
we cannot apply the ω-rule in the way in which we apply what we standardly think of as rules 
of proof (for due to the infinity of its premises we would be never able to check its 
applicability). However, it is one thing to say that this rule is not practically applicable and it 
is another thing to say that to find out that something is derivable with its help is a 'non-
mechanical', 'nonalgorithmic' or 'exclusively human' matter.  
 3. Even more importantly, it seems that we could prove every true arithmetical formula in 
a 'quasiaxiomatic' system, which would have not only rules, but also metarules, rules for 
deriving rules from rules. This seems to be, in effect, the proposal of Dummett (1963): 
 

The only way to explain quantification over natural numbers is to state the principles of 
recognizing as true a statement which involves it; Gödel's discovery amounted to the 
demonstration that the class of these principles cannot be specified exactly once for all, 
but must be acknowledged to be an indefinitely extensible class. 
 

This is to say that though the 'rules' underlying the demonstration of the truth of G are 
available only after we have the system of axioms and rules of PA and therefore it cannot 
be among them, once we accept that the system is open and extendable, there is no reason 
not to take these 'rules' as its extension and in this sense as its part.  
 One way to give this idea a formal shape is to reflect on the fact that we would be able 
to prove G if we were able to prove the consistency of PA (for the implication from the 
consistency to G is a theorem of PA). Whereas we cannot prove this consistency within 
PA, we can extend PA with its postulation. This was proposed and studied by Feferman 
(1962; 1991) under the title of reflection principles. Of course that then the office of the 
Gödel formula shifts from G to a different formula, but we can repeat the procedure and so 
continue indefinitely; whereby every Gödel formula is proved at some stage. (The price to 
be payed for there not being a Gödel formula for the theory as a whole is, of course, again 
that it cannot be finitary.) 
 
 
7. What is the moral we should draw from Gödel's result? 
 
Is there a crucial moral we should draw from Gödel's result? The train of thought leading 
from the result to the 'impossibility of mechanization of human thought', which we sketched 
in the beginning of this paper, seems to be based on the assumption that this moral concerns 
the confrontation of 'syntax' (provability) and 'semantics' (model-theoretic truth); in particular 
that  

Brno Kurt Gödel Days IOP Publishing
Journal of Physics: Conference Series 82 (2007) 012006 doi:10.1088/1742-6596/82/1/012006

8



 
 No axiomatic system can prove all truths. 
 
In this way, Gödel's result seems to point out the fact that 'syntax' can never catch up with 
'semantics'. However, is this characterization adequate? Gödel, as we saw, did not prove 
anything concerning all axiomatic systems – what he was analyzing was exclusively systems 
of arithmetic. Hence should we not rather state 
 
 No axiomatic system of arithmetic can prove all truths about natural numbers? 
 
Expressed thus, it would seem that what his result concerns is the confrontation of 'syntax' of 
arithmetic with 'semantics' of arithmetic. But on closer inspection, even this might not be the 
moral. For as we have seen, Gödel's proof can be also seen as not concerning directly truth vs. 
proof, but rather the fact that no theory that is about natural numbers (i.e. is sound is w.r.t. the 
standard model, N) can reveal all truths about them, and hence can be guaranteed to exclude 
anything that is not a natural number (i.e. is semantically complete w.r.t. N). Hence what 
about 
 
 No axiomatic system sound w.r.t. N is complete w.r.t. N?  
 
Now it would seem that the result is a matter exclusively of 'semantics' of arithmetic. But 
there is still another way to characterize Gödel's result, a way which may be the most faithful 
to the very approach of Gödel: 
 
 No consistent axiomatic system of arithmetic is syntactically complete,  
 
Construed in this way Gödel's result appears as a matter exclusively of 'syntax' of arithmetic. 
 I think that this exegetical exercise indicates that we should be wary of seeing Gödel's 
result as bringing about a simple moral. Gödel's proof is a piece of mathematics (a 
masterpiece, for that matter!), whose significance surely does outrun the boundaries of 
mathematics; but does not do so in a way which would be transparent and which could be 
identified without a deep understanding of the matter. 
 
 
8. Conclusion 
 
What Gödel's result shows beyond doubt is that there is a notion of proof beyond that codified 
by the Hilbertian concept of axiomatic system. We can envisage this in terms of the contrast 
between 'syntax' (proof theory) and 'semantics' (model theory); however, there are also ways 
of approaching the whole matter purely proof-theoretically, as a contrast between stricter and 
looser concepts of proof. Hence we should be very careful when using Gödel's result to 
underpin breathtaking theses about the nature of human reason. 
 We must also bear in mind that though G undoubtedly has a significance that is internal to 
the axiom system of PA, it does not directly follow that it has also an 'external' significance – 
viz. that it articulates a meaningful statement of 'intuitive' mathematics. The latter kind of 
significance is a matter of the relationship between a formal model and the non-formal 
phenomenon it aims to capture (see Peregrin, 2000). But this is a complicated problem which 
I must leave for another occasion. 
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