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Can axioms confer meanings on classical logical connectives? 
 
According to the standard definition, a first-order theory is categorical if all its models are 
isomorphic. The idea behind this definition obviously is that of capturing semantic notions in 
axiomatic terms: to be categorical is to be, in this respect, successful. Thus, for example, we may want 
to axiomatically delimit the concept of natural number, as it is given by the pre-theoretic semantic 
intuitions and reconstructed by the standard model. The well-known results state that this cannot be 
done within first-order logic, but it can be done within second-order one. 
 Now let us consider the following question: can we axiomatically capture the semantic concept of 
conjunction? Such question, to be sure, does not make sense within the standard framework: we 
cannot construe it as asking whether we can form a first-order (or, for that matter, whatever-order) 
theory with an extralogical binary propositional operator so that its only model (up to isomorphism) 
maps the operator on the intended binary truth-function. The obvious reason is that the framework of 
standard logic does not allow for extralogical constants of this type. But of course there is also a 
deeper reason: an existence of a constant with this semantics is presupposed by the very definition of 
the framework1. Hence the question about the axiomatic capturability of concunction, if we can make 
sense of it at all, cannot be asked within the framework of standard logic, we would have to go to a 
more abstract level. To be able to make sense of the question we would have to think about a 
propositional ‘proto-language’, with uninterpreted logical constants, and to try to search out axioms 
which would fix the denotations of the constants as the intended truth-functions. Can we do this? 
 It might seem that the answer to this question is yielded by the completeness theorem for the 
standard propositional calculus: this theorem states that the axiomatic delimitation of the calculus and 
the semantic delimitation converge to the same result. Hence, it seems, we can make do with the 
axiom system alone, and hence the axiom system is capable of confering the right meanings on the 
logical operators. But this is wrong. As is well known, there are theories which do justice to all the 
axioms and inference rules of the standard logic, which are nevertheless incompatible with the 
standard truth-functional interpretation of the operators: e.g. theories containing disjunctions together 
with the negations of both disjuncts2.  
 To clarify the situation, we have to delimit the concepts and the framework of out investigation 
with some rigor. We will take language to be simply a set of sentences with a delimited set of 
acceptable truth-valuations of the sentences. (We refrain from the discussion of whether this 
definition is too broad – form the viewpoint of the present paper it is not important3). Then we can see 
an axiomatic system as a way of delimiting the space of acceptable truth-valuations: an axiom is a 
                                                 
1 We can, of course, switch to another logic, say the intuitionist one, and have a different kind of negation, but 
then again the semantics of the negation-sign will be fixed 'a priori' (i.e. prior to the framweork being put to use) 
rather than being up for grabs. 
2 The first one to note it was probably Carnap (1943). See Koslow (1992, Chapter 19) for more details. 
3 I have discussed this questions in  detail elsewhere (Peregrin, 1997), where I argued that any kind of semantics 
should be seen as a tool of such a delimitation 
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sentence which must be be mapped on 1 by every acceptable valuation, whereas a rule gives a 
sentence which must be mapped on 1 by every valuation which maps some other sentences  on 1. The 
general question now is which kinds of spaces of acceptable valuations are delimitable in this way, i.e. 
in terms of axiomatic systems; and in particular whether we can carve the space in such a way that 
some connectives get pinned down to the standard truth-functions. 
 Let us be a little bit more precise. Let L be a set and O a function mapping L×L on L. Let C be a 
finite set of 'constraints' on valuations of the elements of L, which are of the shape 
 
 [if A1,...,An (are true), then also] A (is true). 
 
Where v is a function from L to B={0,1}, we will say that v respects C if it does justice to all the 
constraints of C. Where F is a function from B×B to B, we will say that C sets the denotation of O to 
F the following two conditions are equivalent  
 
 (i) v respects C; 
 (ii) v(O(A1, A2)) = F(v(A1),v(A2)) for every A1, A2∈ L. 
 
 Now let F¬ , F∧ ¸ F∨  and F→ be the truth-functions standardly assigned to the classical negation, 
conjunction, disjunction and implication, respectively. Then it is obviously the case that the three 
constraints 
 
 if A1, A2, then O(A1, A2); 
 if O(A1, A2), then A1; and 
 if O(A1, A2), then A2 
 
set the value of O to F∧ . On the other hand, there is no finite set of constraints which would set the 
value of O to F¬ , F∨ , or F→. To see this, consider, for instance, the case of F∨ . We may clearly help 
oursevles to the constraints  
 
 if A1, then O(A1, A2); and 
 if A2, then O(A1, A2). 
 
By them we exclude all valuations which map either A1 or A2 on 1, and O(A1, A2) on 0; but what we 
need in addition to this is exclude also all those which map both A1 and A2 on 0 and O(A1, A2) on 1. 
Suppose, for the sake of simplicity, that the language we are considering has no other sentences than 
A1, A2 and O(A1, A2) (hence that now there is only a single valuation left to be excluded). Then the 
exhaustive listing of all possible nontrivial constraints, clearly, is the following: 
 
 1. A1 

 2. A2 

 3. O(A1, A2) 
 4. if A2, then A1 

 5. if O(A1, A2), then A1 
 6. if A2, O(A1, A2) then A1 
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 7. if A1, then A2 

 8. if O(A1, A2), then A2 
 9. if A1, O(A1, A2) then A2 

 10. if A1, then O(A1, A2) 

 11. if A2, then O(A1, A2) 
 12. if A1,A2, then O(A1, A2) 

 
 Out of these, 3., 4., 6., 7., 9., 10., 11., 12. do not exclude the unwanted valuation at all, whereas the 
other do exclude it, but only at the cost of excluding also some of those valuations which should 
remain unexcluded. 
 Of course this is not very surprising: the only thing our constraints can stipulate is that if some 
sentences are true, also some other sentences are true; but not, e.g., that if some sentences are false, 
other sentences are false. But it is only constraints of this very kind which are available to a builder of 
an axiomatic system. This indicates that many possible spaces of acceptable valuations (and 
especially some truth-functions) are not categorically delimitable in the axiomatic way.  
 How does this square with the soundness and completness of the classical, truth-functional logic? 
To see it, let us first give some more definitions. Let  V be a class of mappings of L on B. We define  
 
 Pos(V) = {A∈ L | v(A) = 1 for every v∈ V} 
 Neg(V) = {A∈ L | v(A) = 0 for every v∈ V} 
 
Two classes V1 and V2 of valuations are called positively equivalent iff Pos(V1) = Pos(V2); they are 
called negatively equivalent iff Neg(V1) = Neg(V2). 
 Let L be a language such that for every its sentence A there is a sentence ¬ A and for every two 
sentences A1 and A2 there is a sentence A1∧ A2. We will call its valuation v classical iff  
 
 v(¬ A) = F¬(v(A)) 
 v(A1∧ A2) = F∧ (v(A1),v(A2)) 
 
We will call it noncontradictory if for no A it is the case that v(¬ A)=v(A)=1; and we will call it full iff 
for no A it is the case that v(¬ A)=v(A)=0. (Hence every classical valuation is both noncontradictory 
and full.) 
 Calling now the valuation quasi-classical iff it respects the axiom system of the classical 
propositional claculus, what we are going to prove in this paper is the following: 
 
 (1) The class of all quasi-clasical valuations is positively equivalent to the class of all classical 
valuations. 
 (2) The class of all quasi-clasical valuations which are noncontradictory is positively and 
negatively equivalent to the class of all classical valuations. 
 (3) The class of all quasi-clasical valuations which are full and noncontradictory conicides with 
the class of all classical valuations. 
 
It is clear that (1) is nothing else than the standard completeness theorem for classical propositional 
logic (and hence proving merely it would be no achievement). From the current perspective, however, 
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it is only one of the series of results which characterize the relationships between the class of all 
quasi-clasical valuations and the class of all classical valuations, other ones being (2) and (3). 
 Can these results be obtained by a straightforward generalization of the classical completness 
proof? I do not think so. How do we usually prove (1)? The idea of the most common proof, which 
Mendelson (1964) attributes to Kalmár (1936), can be construed as follows. For a truth table, let us 
call a formula (X1→(...(Xn→X)...)) the internalization of its i-th row of the table iff the following 
holds: (i) if the value in the i-th row and j-th column is 1, then Xi is Ai, whereas in the opposite case it 
is ¬ Ai; (ii) if the value in the i-th row and the value column is 1, then X is A, whereas in the opposite 
case it is ¬ A. Now Kalmár’s proof can be seen as showing that (i) the internalization of any row of the 
truth table of any formula is a theorem; and (ii) if a formula is a tautology, then it is derivable from 
the internalizations of the rows of its truth table. As a consequence, a tautology is derivable from 
theorems, and hence is itself a theorem. 
 There does not seem to be a way of generalizing this proof to cover not only (1), but also (2) and 
(3). And what we are going to do within the rest of the paper is to develop a more general framework, 
within which we can not only prove the theorems sketeched above, but also reach a helpful vantage 
point to oversee an aspect of the landscape of elementary logic.  
 
 
Constraints and their internalization 
 
Hence the problem, as we have articulated it in the previous section, is to try to find an axiomatic 
delimitation of the space of acceptable valuations which would pin down the denotations of some 
operators to the usual truth-functions. More generally, the problem is that of finding an axiomatic 
delimitation of a space of valuation delimited in some more general way. Before we turn directly to this 
task, we give some definitions and prove some simple preparatory results. 
 
DEFINITION 1. A language is a set (whose elements are called sentences) plus a set of its mappings on 
B={0,1} (called acceptable valuations). A sentence S of L is called verified by a valuation v iff v(S) = 1; 
it is called falsified by  v iff v(S) = 0; it is called valid iff it is verified by every acceptable valuation and it 
is called countervalid iff it is falsified by every one. A class C of sentences is called to entail a sentence 
S iff S is verified by every acceptable valuation that verifies all sentences of C. If  {S1,...,Sn} entails S, we 
will write  
 S1,...,Sn |= S. 
 
It is clear that the concept of validity is reducible to that of entailment: a sentence is valid simply iff it is 
entailed by an empty set. Now we are going to characterize a class of languages for which there is also an 
inverse reduction. 
 
DEFINITION 2. Let ► be a binary function from the set of sentences of a language L to the same set; we 
will write S1►S2 instead of ►(S1,S2)4. ► is called implication iff for every sentences S1,...,Sn, S  of L 

                                                 
4 Note that we do not see implication as a sign, but rather as a function. Of course that in a typical case the 
function will map any pair of sentences on a sentence built out of them with the help of an implication-sign; but 
we do not care about the syntax. In this sense, our treatment of implication and negation is close to that of 
Koslow (1992). 
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 (i) S1►S2, S1 |= S2. 
 (ii) if S1,...,Sn |= S (where n>0), then S1,...,Sn-1 |= Sn►S, 
If such a function exists, then L is said to have implication.  
 
THEOREM 1. Let ► be a implication. Then S1►(...(Sn►S)...) is valid iff S1,...,Sn entails S.  
PROOF: We first prove the direct implication, by induction. Let first n=1. If S1►S is valid, then, 
according to (i) of the definition of implication, S must be true whenever S1 is. Hence if S1►S is valid, 
then S1 entails S. Let now the theorem hold for n=m; we will show that it holds for n=m+1. So let 
S1►(...(Sm+1►S)...) be valid. Then, according to the inductive assumption, S1,...,Sm |= Sm+1►S. However, 
according to (i) of the definition of implication, Sm+1►S, Sm+1 |= S. But as S1,...,Sm,Sm+1 entails both 
Sm+1►S and Sm+1, then, due to the obvious transitivity of entailment, S1,...,Sm,Sm+1 |= S. 
Now we prove the inverse implication, again by induction. Let first n=1. If S1 |= S, then S1►S is valid 
according to (ii) of the definition of implication. Let now the theorem hold for n=m; we shall show that it 
holds for n=m+1. Let S1,...,Sm+1 entail S. Then, according to (ii) of the definition of implication, S1,...,Sm |= 
Sm+1►S;  and S1►...(Sm+1►S)...) is valid according to the inductive assumption. 
 
The most perspicuous species of implication is constituted by the well-known material implication: 
 
DEFINITION 3. A binary function f from the set of sentences of a language L to the same set is called 
material implication iff, for every sentences S1, S2 of L, every acceptable valuation verifies f(S1,S2) just in 
case it either falsifies S1 or verifies S2. 
 
It is clear that a material implication is an implication; but it can be shown that not every implication is 
material. 
 We will need to consider also a relation between sentences which is more general than entailment. We 
will say that a distribution of truth values among the sentences S1, ..., Sn forces a truth value of a sentence 
S iff any acceptable valuation which distributes the truth values among S1, ..., Sn in the former way assigns 
the latter value to S: 
 
DEFINITION 4. Let L be a language, let S1, ..., Sn, S be its sentences, and let V1, ..., Vn, V ∈ {0,1}. We will 
say that the assignments of Vi to Si (for i=1 to n) forces the assignment of V to S, and will abbreviate this 
to 
 S1

V1, ..., Sn
Vn |= SV, 

iff v(S)=V for any acceptable valuation v such that v(Si)=Vi (for i=1 to n).  
An instance of forcing will be called positive if the only truth value mentioned in it is 1, i.e. if it is of the 
form 
 S1

1, ..., Sn
1 |=S1. 

An instance of forcing will be called absolute if n = 0, i.e. if it is of the form 
 |= SV. 
 
It is clear that every instance of entailment can be seen as a (positive) instance of forcing (S1

1, ..., Sn
1
 |= S1 

is the same as S1, ..., Sn |= S); hence entailment can be seen as a special case of forcing. Let us now 
characterize a class of languages for which entailment is equivalent with forcing. 
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DEFINITION 5. An unary function # from sentences to sentences is called negation iff no acceptable 
valuation verifies both S and #S. It is called a standard negation if, moreover, every acceptable valuation 
which does not verify S verifies #S, i.e. if every acceptable valuation verifies S if and only if it falsifies 
#S. 
 
THEOREM 2. Let # be a negation. Then: 
 (i) if S1

V1,...,Sn
Vn |=  #Sn+1

1, then S1
V1,...,Sn

Vn |=  Sn+1
0 (in particular, if |= #S1, then |= S0); and 

 (ii) if S1
V1,...,Si

0,...,Sn
Vn |=  Sn+1

Vn+1, then S1
V1,...,#Si

1,...,Sn
Vn |=  Sn+1

Vn+1. 
PROOF: (i) Suppose that S1

V1,...,Sn
Vn |=  #Sn+1

1. Then #Sn+1 is verified by every acceptable valuation which 
assigns Vi to Si for i=1 to n. But then every such valuation is bound to falsify Sn+1. Hence S1

V1,...,Sn
Vn |=  

Sn+1
0. 

(ii) Suppose that S1
V1,...,Si

0,...,Sn
Vn |=  Sn+1

Vn+1. Then every acceptable valuation which assigns Vj to Sj for 
j=1,...,i-1,i+1,..., n and 0 to Si assigns Vn+1 to Sn+1. However, as every truth valution which verifies #Si is 
bound to falsify Si, and hence every acceptable valuation which assigns Vj to Sj for j=1,...,i-1,i+1,..., n, and 
1 to #Si, assigns Vj to Sj for j=1,...,i-1,i+1,..., n, and 0 to Si. Hence S1

V1,...,#Si
1,...,Sn

Vn |=  Sn+1
Vn+1. 

 
THEOREM 3. Let # be a standard negation. Then  
 (i) if S1

V1,...,Sn
Vn |=  Sn+1

0, then  S1
V1,...,Sn

Vn |=  #Sn+1
1 (in particular, if |= S0, then |= #S1); and 

 (ii) if S1
V1,...,#Si

1,...,Sn
Vn |=  Sn+1

Vn+1, then S1
V1,...,Si

0,...,Sn
Vn |=  Sn+1

Vn+1. 
Hence for every sentences S1,...,Sn,Sn+1 and every truth values V1,...,Vn,Vn+1 it holds that S1

V1,...,Sn
Vn force 

Sn+1
Vn+1 iff X1,...,Xn entail Xn+1, where Xi is Si if Vi is 1 and it is #Si if Vi is 0. Hence in a language which has 

a standard negation, any instance of forcing is expressible in the form of an instance of entailment.  
PROOF: As a sentence S of L is verified by a acceptable valuation iff #S is not, the requirement that S is 
not verified is equivalent to the requirement that #S is. 
 
DEFINITION 6. A language is called normal if it has a standard negation and an implication. A language 
is called strongly normal if it has a standard negation and a material implication. 
 
Negation is directly characterized in terms of constraints. The same is not true of implication in general, 
but it is true about its material version:  
 
THEOREM 4. g is a standard negation iff 
 (N1) S1 |= #S0 , and 
 (N2) S0 |= #S1; 
f is a material implication iff  
 (MI1) S1

0 |= (S1►S2)1, 
 (MI2) S2

1 |= (S1►S2)1, and 
 (MI3) S1

1,S2
0 |= (S1►S2)0. 

PROOF: Obvious. 
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Characterizing validity 
 
What we are after can now be generally restated as delimiting the set of acceptable valuations of 
sentences of a language in terms of positive constraints. If we assume that the set is delimited by (not 
necessarily positive) constraints (which is the case as far as our main problem is concerned, for the space 
of acceptable truth valuations of the classical propositional calculus is delimited by the definition of its 
semantics), our task is that of turning non-positive constraints into positive ones with the smallest 
possible tampering with their effect. We have seen that if a language has an implication and a standard 
negation, every its constraint is expressible as positive and absolute – i.e., in effect, as a valid sentence. 
Let us call a sentence expressing a constraint in this way the internalization of the constraint: 
 
DEFINITION 7. Let f and g be a binary resp. a unary function from the set of sentences of a language L 
to the same set. An (f,g)-internalization of a constraint S1

V1, ..., Sn
Vn |= Sn+1

Vn+1 is the sentence 
f(X1,...f(Xn,Xn+1)), where Xi is Si if Vi is 1 and is g(Si) if Vi is 0. (Hence the internalization of an absolute 
constraint |= Sn+1

Vn+1 is Xn+1; and that of a positive absolute constraint |= Sn+1
1 is Sn+1.) 

 
THEOREM 5. If ► is an implication and # a standard negation, then S1

V1, ..., Sn
Vn forces Sn+1

Vn+1 if and 
only if the (►,#)-internalization of S1

V1, ..., Sn
Vn |= Sn+1

Vn+1 is valid. 
PROOF: Due to Theorem 1, S1

V1, ..., Sn
Vn |= Sn+1

Vn+1 iff X1,...,Xn entail Xn+1 (where Xi is Si or #Si according 
to whether Vi is 1  or 0); and due to Theorem 3, X1,...,Xn entail Xn+1 iff X1►(...(Xn►Xn+1)...) is valid. 
 
The space of acceptable valuations of a language is normally specified in a metalanguage. However, if 
the language we are considering is normal, it allows us to express the needed constraints also in the object 
language itself – hence normal languages can be seen as displaying certain 'self-explicitating' capabilities. 
 Moreover, the fact that having an implication and a standard negation we can turn every constraint 
into a positive and absolute one may seem to imply that any set of valuations which is delimitable in 
terms of constraints at all is delimitable in terms of positive and absolute constraints (namely of the 
internalizations of the original constraints). This would solve our task. But unfortunately it is hopeless.  
 The reason is that constraints are ‘internalizable’ (i.e. expressible in the form of valid sentences) only 
if there is a negation and an implication, where the negation and implication are themselves defined in 
terms of (non-positive and non-absolute) constraints  – and these constraints’ ability to constitute negation 
and implication does not survive their internalization. To see this, consider the definition of negation: 
 
 S1 |= #S0 , and 
 S0 |= #S1. 
 
These constraints are internalized to 
 
 S►##S , and 
 #S►#S , 
 
respectively. However, it is clear that the validity of the internalizations alone does not make # into a 
negation: this can be seen, e.g., from the fact that they are obviously compatible with # being the identity 
mapping.  
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 This means that a set of constraints delimiting the space of acceptable valuations cannot be always 
turned into a set of positive constraints. (Of course not: positive constraints can characterize acceptable 
valuations only in terms of the setences they must verify, and consequently a valuation which verifies 
more sentences than some acceptable one is bound to be acceptable too. In contrast to this, non-positive 
constraints can characterize accpetable valuations also in terms of sentences which are to be falsified; and 
hence they can render a valuation unacceptable even if the set of sentences it verifies contains the set of 
sentences verified by an acceptable valuation).  
 However, despite of the fact that the possibility of delimiting the space of acceptable valuations of 
sentences in terms of positive constraints does not obtain in general, and does not obtain even for strongly 
normal languages, for a language of the latter kind we can define a language with its space of acceptable 
valuations delimited by means of merely positive constraints and such that its set of valid sentences 
coincides with that of the original one. This is what we are going to show now. But let us first adopt some 
definitions which will allow us talk more concisely: 
 
DEFINITION 8. A language is called (positively) delimited iff the space of the acceptable valuations of 
its sentences is the set of all and only valuations satisfying a set of (positive) constraints.  
 
Hence what we are after now is to prove that to every strongly normal and delimited language there exists 
a positively delimited language with the same class of valid sentences. First we will show that for every 
strongly normal and delimited language L there exists a certain language L∗

 with the following two 
properties:  
 
 (*) Whenever S1

V1, ..., Sn
Vn |= Sn+1

Vn+1 in L, the internalization of this constraint is valid in L∗ . 
 (**) All constraints delimiting the space of acceptable valuations of L∗  are in force in L.  
 

 It is easy to see that (*) implies that the set of valid sentences of L is contained in that of L∗ ; whereas 
(**) implies that, vice versa, the set of valid sentences of L∗  is contained in that of L. To be able to prove 
(*), we first need to precisely characterize the class of constraints mentioned in it: 
 
DEFINITION 9. Let L be a language and S1, ..., Sn, Sn+1 its sentences and V1, ..., Vn, Vn+1 truth values. If 
S1

V1, ..., Sn
Vn forces Sn+1

Vn+1, we will say that the constraint 
 S1

V1, ..., Sn
Vn |= Sn+1

Vn+1 

is in force for L. 
 
Note that if the space of  accepable valuations of L is delimited by a set C of constraints, then all 
constraints from C are in force for L, but not necessarily every constraint which is in force for L belongs 
to C. For example the constraint  
 S |= S 
is in force for every language, independently of how its space of acceptable valuations is delimited. Or if 
the set of delimiting constraints contains 

 S1
V1, ..., Sn

Vn |= SV  
then also the constraint 
 S1

V1, ..., Sn
Vn

, Sn+1
Vn+1 |= SV  

is thereby in force. Etc. (Hence constraints ‘entail’ other constraints.) 
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 Now we are ready to formulate what we will call the Internalization Theorem and what spells out that 
for a strongly normal and delimited language there is a language which fulfills the above requirement (*). 
Because its proof is somewhat complicated, we will postpone it to the next section. 
 
THEOREM 6. (‘Internalization Theorem’) Let L be a language, ► and # be a binary resp. a unary 
function from the set of sentences of L to the same set, and let the space of acceptable valuations of L be 
delimited by (MI1), (MI2), (MI3), (N1), (N2) and a set C of other constraints (which implies that the 
language is strongly normal). Let L∗  be a language which is just like L with the exception that its space of 
acceptable valuations is delimited by the set of constraints containing the (►,#)-internalizations of all 
constraints from C plus the following positive constraints: 
 (A1) |= S2►(S1►S2) 
 (A2) |= (#S2►#S1)►(S1►S2) 
 (A3) |= (S1►S2)►((S2►S3)►(S1►S3)) 
 (A4) |= (S1►(S1►S2))►(S1►S2) 
 (MP) S1►S2, S1 |= S2   
Then the (►,#)-internalization of every constraint which is in force in L is valid in L∗ .  
PROOF: Postponed to the next section. 
 
It is obvious that (A1)–(A4) together with (MP) constitute an axiomatization of the classical propositional 
calculus (this very one being proposed, e.g., by Tarski, 1965); and the theorem resembles the completness 
theorem for this calculus. However, as we have already indicated, whereas the concept of completness 
aims at mere coincidence of valid sentences, our aim is more ambitious: to inspect the conditions of 
coincidence of the entire spaces of acceptable valuations. Classical completness then falls out of this as a 
special case. 
 Consider the language of the classical propositional calculus based on the primitive connectives ¬  and 
→→→→ (hereafter CPC). The space of acceptable valuations of its sentences of is obviously delimited by the 
following constraints 
 
 S1 |= ¬S0 
 S0 |= ¬S1; 
 S1

0 |= (S1→→→→S2)1 
 S2

1 |= (S1→→→→S2)1 
 S1

1,S2
0 |= (S1→→→→S2)0 

 
Hence the function mapping S on ¬S is a standard negation, whereas that mapping S1 and S2 on S1→→→→S2 is 
a material implication (and hence CPC is strongly normal).   
 Now take the language CPC∗  which is just like CPC with the single exception that the space of 
acceptable valuations of its sentences is delimited by the following (positive) constraints: 
 
 (A1PC) |= S2→→→→(S1→→→→S2) 
 (A2 PC) |= (¬S1→→→→¬S2)→→→→(S2→→→→S1) 
 (A3 PC) |= (S1→→→→S2)→→→→((S2→→→→S3)→→→→(S1→→→→S3)) 
 (A4 PC) |= (S1→→→→(S1→→→→S2))→→→→(S1→→→→S2) 
 (MP PC) S1→→→→S2, S1 |= S2   
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According to the theorem just stated, the internalizations of all constraints which are in force for CPC are 
valid sentences of CPC∗ . Hence, as, e.g., 
 
 S1→→→→S2, ¬S1→→→→S2 |= S2 
 
is a constraint which is in force in CPC (as is easily computed), its internalization 
 
 (S1→→→→S2)→→→→((¬S1→→→→S2)→→→→S2) 
 
is a valid sentence of CPC∗ . In particular, every sentence which is valid in CPC is valid in CPC∗ .  
 Note that it would be quite easy to find some positively determined language in which all the 
internalizations of the constraints being in force in L would be valid – take the trivial language which 
results from L by replacing its delimitation of the space of acceptable valuations by the single constraint 
|= S1 (i.e. which would render all sentences valid). (It would be easy to find a complete axiomatization of 
a logic, if we were not to require soundness.) The following lemma says that L∗

 fulfils not only (*), but 
also (**); namely that all the constraints delimiting L∗

 are in force in L. 
 
LEMMA 1. Let L be a strongly normal language with I being its material implication and # being its 
standard negation. Then the constraints (A1)-(A4) and (MP) are in force in L. 
PROOF: An easy computation. 
 
The desired result, namely that the set of valid sentences of L∗  is the same as that of L is now 
forthcoming: 
 
THEOREM 7. The sets of valid sentences of the languages L and L∗  from Theorem 6 coincide.  
PROOF: Let S be valid in L. This means that the constraint |= S is in force in L, and hence its 
internalization is valid in L∗ . But the internalization of |= S is S and hence S is valid in L∗ . Let now 
conversely, S be valid in L∗ . As all the costraints of L∗  are in force in L (as demonstrated by the previous 
lemma), everything which is valid in L∗  is a fortiori valid in L – hence S is valid in L. 
 
This implies that the set of valid sentences of CPC coincides with that of CPC∗ . However, note that this 
does not mean that the classes of acceptable valuations of the two languages coincide! Indeed, there are 
valuations which are not acceptable in CPC, but are acceptable in CPC∗ : for example the valuation which 
maps every sentence on 1 is not acceptable in CPC (because it violates the constraint S1 |= ¬S0), whereas 
it is acceptable in CPC∗  (as the constraints of CPC are positive, it can force no sentence to be false). 
 Theorem 7 says that if we are interested only in the validity of sentences, we are free to replace L with 
L∗ . Now we prove that if we ‘manually’ tamper with the space of the acceptable valuations of L∗  so that # 
becomes a negation, the equivalence extends to countervalidity. 
 
LEMMA 2. If (A1)-(A4) and (MP) are in force in L, then no acceptable valuation verifies both S and #S, 
unless it verifies every sentence whatsoever; i.e. the constraint 
 #S1, S1 |= S2   
is in force in L. 
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PROOF: In force of (A1), every sentence of the form #S1►(#S2►#S1) is valid. However, the antecedent 
of a sentence of the shape (#S1►(#S2►#S1))►(((#S2►#S1)►(S1►S2))►(#S1►(S1►S2))), which is valid 
in force of (A3), is just of this form; hence, in force of (MP), every sentence of the form 
((#S2►#S1)►(S1►S2))►(#S1►(S1►S2)) is valid. However, the antecedent of such sentence is valid in 
force of (A2), hence, in force of (MP), every sentence of the form #S1►(S1►S2) is valid. This means that 
if #S1 is true, also S1►S2 must be true; hence that if #S1 and S1 are true, S2 must be true. 
 
THEOREM 8. Let L and L∗  be as before. Let L∗∗  be a language which is just like L∗  with the single 
possible exception that its space of acceptable valuation excludes the valuation which falsifies every 
sentence. Then both the sets valid and the sets of countervalid sentences of L and L∗∗  coincide.  
PROOF: It follows from (N1) that the space of acceptable valuations of L does not contain the valuation 
falsifying all sentences. Hence every acceptable valuation of L is an acceptable valuation of L∗∗ ; and 
hence every sentence countervalid in L∗∗  is countervalid in L. 
From the other side, all the internalizations of the constraints of L clearly keep to be valid in L∗∗ , and 
hence if a sentence S is countervalid in L, #S is bound to be valid in L∗∗ . Moreover, no valuation of L∗∗  
verifies both S and #S (due to the previous lemma) – i.e. # is a negation. This means that if #S valid, S is 
bound to be countervalid (cf. Theorem 2(i)). It follows that everything which is countervalid in L is 
countervalid in L∗∗ . 
 
Let CPC∗∗

 be like CPC∗
 with the single exception that its space of acceptable valuations does not contain 

the function mapping everything on 1. Then both the spaces of valid and countervalid sentences of 
CPC∗∗

 and CPC coincide. Note that this still does not mean that the classes of acceptable valuations of 
the two languages coincide. For example, a valuation which falsifies both S1 and ¬S1 is not acceptable in 
CPC (because it violates the constraint S0 |= ¬S1), but it is acceptable in CPC. 
 
If we now, moreover, guarantee that # is a standard negation, the equivalence becomes complete: 
 
THEOREM 9. Let L and L∗∗  be as before. Let L∗∗∗  be a language which is just like L∗∗  with the single 
possible exception that its space of acceptable valuations excludes all valuations which, for some 
sentence S, falsity both S and #S. Then the spaces of acceptable valuations of L and L∗∗∗  coincide, and 
hence L coincides with L∗∗∗ . 
PROOF: It follows from (N2) that no valuation for which there exists a sentence S such that both S and 
#S are falsified is acceptable in L. Hence none of the valuations which are acceptable in L∗∗ , but not in 
L∗∗∗  are acceptable in L, and hence every acceptable valuation of L is an acceptable valuation of L∗∗∗ .  
From the other side, all the internalizations of the constraints of L still keep to be valid in L∗∗∗ . Moreover, 
every acceptable valuation of L∗∗∗  now verifies S if and only if it falsifies #S and vice versa – i.e. # is a 
standard negation. This means that the validity of an internalization implies the internalized constraint’s 
being in force (cf. Theorem 3(i)); and hence that every constraint which is in force in L is in force also in 
L∗∗∗ . It follows that every acceptable valuation of L∗∗∗  is an acceptable valuation of L. 
 
Let CPC∗∗∗

 be like CPC∗∗
 with the single exception that its space of acceptable valuations does not 

contain any function falsifying any sentence together with its negation. Then the spaces of acceptable 
valuations of CPC∗∗∗  and CPC coincide, and hence so do the two languages.  
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Proof of the ‘Internalization Theorem’ 
 
The proof of the basic theorem of the previous section is somewhat complex, and hence in order not to 
blur the coherence of the exposition it had to be postponed. We are going to present it in this section. 
Remember that what  we want to prove is that for every strongly normal language whose valuations are 
delimited by a class C of constraints there is a certain language with merely positive constraints such that 
the internalizations of all constraints from C  are valid in it. In order to be able to prove this, we must first 
characterize the class of all constraints which are in force in a language whose space of acceptable 
valuations is delimited by C. 
 Hence the question which is before us is the following: given that the space of acceptable valuations 
of a language L is delimited by the class C of constraints, what is the set of all constraints which are in 
force for L (which are ‘entailed’ by C)? The strategy we are going to employ answering it is based on the 
fact that what a constraint S1

V1, ..., Sn
Vn |= SV effects is the exclusion of all valuations of the sentences of L 

which map Si on Vi, but do not map S on V – in other words which (being subsets of the Cartesian product 
of the set of sentences of L and the set B of the two truth values) contain the set 
{<S1,V1,>,...,<Sn,Vn,>,<S,VC,>} where VC is the truth-value complementary to V. Now we are first going 
to characterize the set of all valuations not containing any of a given set of subsets of S×B, and then go on 
to transform this characterization, in several steps, into the desired characterization of all constraints 
‘entailed’ by a given class of constraints. 
 
DEFINITION 10. Let S be the set of sentences of a language. A truth-valuative set (over S) (tvs) will be 
any subset of S×B. If Y = <S,V> is an element of S×B, then YC will denote the pair <S,VC>, where VC is 
the truth value complementary to V. A tvs is called an elementary contradiction if it is of the form {Y, 
YC}. A tvs is called a (truth-)valuation (tv) (of S) if it is a total function. A tvs is called inconsistent iff it is 
contained in no tv.  
 
LEMMA 3. A tvs is inconsistent iff it contains some Y together with YC; hence the set of all inconsistent 
tvs’s is the smallest set containing all elementary contradictions and closed to forming supersets.  
PROOF: Obvious. 
 
DEFINITION 11. If C is a set of tvs’s, then a tvs is C-inconsistent if it is contained in no tv which does 
not have an element of C for its subset.  
 
It might seem that C-inconsistent tvs’s are precisely those which contain either an elementary 
contradiction or an element of C. But a more careful consideration reveals that this is not the case. 
Consider a tvs X and imagine we want to extend it to a tv not containing an element of C. The extension 
is clearly impossible if X contains an elementary contradiction or an element of C. Otherwise we can 
imagine that the extension proceeds in the following way: we take one of the elements of S which does 
not belong to the domain of X (i.e. such that <S,V> does not belong to X for any V), form the pair <S,V>, 
where V is an arbitrarily chosen truth value, and add it to X; and we repeat this for all the elements of the 
complement of the domain of X in S. Could such a procedure fail to provide the desired extension? 
Indeed it could: it might happen that both X∪ {<S,1>} and X∪ {<S,0>} belong to C (or an analogous thing 
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may happen at some later step). In such a case X is not extendable to a tv not containing an element of C; 
and hence is C-inconsistent. In other words, we have another closure condition for the set of C-
inconsistent sets: X is C-inconsistent if both X∪ {<S,1>} and X∪ {<S,0>} are C-inconsistent. 
 
DEFINITION 12. The tvs X is a resolution of the tvs’s Y1 and Y2 iff there is a sentence S and a truth value 
V so that Y1=X∪ {<S,V>} and Y2=X∪ {<S,VC>}. 
 
LEMMA 4. The set of C-inconsistent tvs’s is the smallest set containing all elementary contradictions and 
all elements of C, and closed to forming supersets and resolutions. 
PROOF: We have seen that the only tvs which cannot be extended to a tv is one which either contains an 
elementary contradiction, or contains an element of C, or is the resolution of two C-inconsistent tvs’s. 
 
DEFINITION 13. A quasiconstraint (qc) is an ordered pair <X,Y> where X is a tvs and Y is an element of 
S×B. A tv is said to conform to the qc if it either does not contain X or contains Y. A qc is said to be valid 
if it is conformed to by every tv. If C is a set of qc’s, then a qc is said to be C-valid if every tv which 
conforms to every element of C conforms to it. The qc <X,YC> is said to be a representation of the tvs 
X∪ Y; X∪ YC is said to be the projection of <X,Y>. Two qc’s are equivalent iff they have the same 
projection. 
 
LEMMA 5. A qc is valid iff its projection is inconsistent. It is C-valid iff its projection is C*-inconsistent 
(where C* is the set of all projections of elements of C). 
PROOF: Obvious. 
 
It is clear that a set contains all C-valid qc’s iff: it contains representations of all C*-inconsistent sets and 
it is closed to the equivalence of qc’s (i.e. iff it always contains all constraints equivalent to a constraint it 
contains).  
 
LEMMA 6. A set contains all C-valid qc’s iff: 
 (i) it contains <{Y},Y> for every Y 
 (ii) it contains all elements of C 
 (iii) it contains <X∪ {Y},S> whenever it contains <X,S> 
 (iv) it contains <X,S> whenever it contains <X∪ {Y},S> and <X∪ {YC},S> 
 (v) it contains  <{X1,...,Xi-1,YC,Xi+1,...,Xn},Xi

C>  whenever it contains <{X1,...,Xn},Y> 
PROOF: (i) guarantees that the set contains representations of all elementary contradictions; (ii) 
guarantees that it contains representations of all projections of C. (iii) guarantees that it contains a 
representation of a tvs, then it contains a representation of every its superset; whereas (iv) guarantees that 
if it contains representations of two tvs’s which have a resolution, then it contains a representation of the 
resolution. (v) then guarantees that if the set contains a representation of a tvs, then in contains all other 
representations of the same tvs. 
 
DEFINITION 14. A constraint (c) is an ordered pair <X,Y> where X is a n-tuple of elements of S×B and 
Y is an element of S×B. A c <<X1,...,Xn>,Y> is said to represent the qc <{X1,...,Xn},Y>; whereas the latter 
is said to be a projection of the former. Two constraints are said to be equivalent if their projections 
coincide. 
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LEMMA 7. A set contains all C-valid c’s iff: 
 (i) it contains <<Y>,Y> for every Y 
 (ii) it contains all elements of C 
 (iii) it contains <<X0,X1,...,Xn>,Y> whenever it contains <<X1,...,Xn>,Y> 
 (iv) it contains <<X2,...,Xn>,Y> whenever it contains <<X1,...,Xn>,Y> and <<X1

C,...,Xn>,Y> 
 (v) it contains  <<YC,X2,...Xn>,X1C>  whenever it contains <<X1,...,Xn>,Y> 
 (vi) it contains <<Xπ(1),...,Xπ(n)>,Y> whenever it contains <<X1,...,Xn>,Y>, for every permutation π of 
{1,...,n} 
 (vii) it contains <<X1,...,Xn>,Y> whenever it contains <<X1,X1,...,Xn>,Y>  
PROOF: A c is C-valid iff it is a representation of a C*-valid qc, where C* is the set of projection of the 
elements of C. Hence a set contains all C-valid c’s iff it contains a representation of every C*-valid qc and 
it contains every c equivalent to a c it contains. The former condition is guaranteed by (i)-(v) which 
straightforwardly correspond to the clauses of the previous lemma. The latter is guaranteed by (vi) and 
(vii) (that the set contains <<X1,X1,...,Xn>,Y> whenever it contains <<X1,...,Xn>,Y> follows from (iii)).  
 
Now we can pass over from constraints to sentences (remember that the (►,#-)internalization of the 
constraint S1

V1, ..., Sn
Vn |= Sn+1

Vn+1 is the sentence (X1►...(Xn►Xn+1)), where Xi is Si if Vi is 1 and is #Si if Vi 
is 0) 
 
LEMMA 8. A set of sentences contains the ►,#-internalizations of all C-valid c’s iff: 
 (i) it contains (S►S) for every sentence S 
 (ii) if c∈ C, then it contains the ►,#-internalization of c 
 (iii) it contains X0►(X1►...(Xn►Y)...) whenever it contains X1►(...(Xn►Y)...) 
 (iv) it contains X2►(...(Xn►Y)...) whenever it contains X1►(X2►...(Xn►Y)...)  
         and #X1►(X2►...(Xn►Y)...) 
 (v) it contains  X1►(...(#Y►#Xn)...)  whenever it contains X1►(...(Xn►Y)...) 
 (vi) it contains (Xπ(1)►(...(Xπ(n)►Y)...) whenever it contains X1►(...(Xn►Y)...), for every permutation 
π of {1,...,n} 
 (vii) it contains X1►(...(Xn►Y)...) whenever it contains X1►(X1►...(Xn►Y)...) and vice versa. 
PROOF: Each of the clauses of the lemma obviously guarantees that the set contains the internalizations 
of all c’s specified in the corresponding clause of the previous lemma. 
 
LEMMA 9. A set of sentences contains the internalizations of all C-valid c’s iff it contains all sentences 
of the following shapes: 
 (i) X►X 
 (ii) the ►,#-internalization of c, where c∈ C 
 (iii) (X1►...(Xn►Y))►(X0►(X1►...(Xn►Y)...)) 
 (iv) (X1►(X2►...(Xn►Y)))►((#X1►(X2►...(Xn►Y)))►(X2►...(Xn►Y))) 
 (v) ((X1►...(Xn►Y)))►(X1►...(#Y►#Xn)))) 
 (vi) (X1►...(Xn►Y))►(Xπ(1)►...(Xπ(1)►Y)) for every permutation π of {1,...,n} 
 (vii) ((X1►(X1►...(Xn►Y))))►(X1►...(Xn►Y)))) 
and 
 (viii) it contains Y whenever it contains (X►Y) and X 
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PROOF: Given (viii), (iii)-(vii) obviously have the power of the corresponding clauses of the previous 
lemma. 
 
LEMMA 10. Let a set of sentences contain all sentences of the following shapes: 
 (ii) Y►(X►Y) 
 (iii) (#Y►#X)►(X►Y) 
 (iv) (X1►X2)►((X2►X3)►(X1►X3)) 
 (v) (X►(X►Y))►(X►Y) 
and let it 
 (vi) contain Y whenever it contains X►Y  and X. 
Then the set contains all sentences of the following shapes: 
 (a) Y►Y 
 (b) X1►((X1►X2)►X2) 
 (c) (X1►(X2►X3))►(X2►(X1►X3)) 
 (d) #X1►(X1► X2) 
 (e) ##X1►X1 
 (f) X1►##X1 
 (g) (X2►X3)►((X1►X2)►(X1►X3)) 
 (h) (X►Y)►(#Y►#X) 
 (i) (X1►X2)►((#X1►X2)►X2) 
 (j) X1►(#X2►#(X1►X2)) 
 
PROOF: As the statements (ii)-(v) and the rule (vi) straightforwardly correspond to an axiomatization of 
the classical propositional calculus (the Tarski's one mentioned above), the proof is straightforwardly 
analogous to the proof of the fact that statements corresponding to (a) – (j) are provable within the 
system.  
In order to make it more comprehensible, let us adopt the following notational conventions: A formula 
following by the symbol n in brackets is a shorthand for ‘F belongs to the set for it is of the form n’ 
(where n is either a letter marking a formula proved earlier or a number formula occuring earlier in the 
proof). A formula followed by two symbols n1 and n2 in brackets is a shorthand for ‘F belongs to the set 
in force of (vi) applied to the formulas n1 and n2’. Moreover, we will make use of the fact that if the set 
contains a formula (X1►...(Xn►Y)), then if it contains its ‘antecedents’ X1, ...,  Xn, it is, in force of (iv) 
bound to contain Y: hence a formula followed by a letter L and symbols n1 through nn in brackets will be a 
shorthand for ‘F belongs to the set in force of the set containing L and its ‘antecedents’ n1 through n2’. 
Now we can give the proofs of the clauses (a)-(j) in the following concise form: 
a: 
1 (ii) (Y►(Y►Y)) 
2 (v 1) (Y►Y) 
b: 
1 (ii) X1►((X1► X2)► X1) 
2 (iv) ((X1► X2)►X1)►(X1►X2)►((X1► X2)►X2) 
3 (iv 1,2) X1►(X1►X2)►((X1► X2)►X2) 
4 (v) (X1►X2)►((X1►X2)► X2)►((X1►X2)►X2) 
5 (iv 3,4) X1►((X1►X2)►X2) 
c: 
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1 (iv) (X1►(X2►X3))►(((X2►X3)►X3)►(X1►X3)) 
2 (iv) X2►((X2►X3)►X3)►((((X2►X3)►X3)►(X1►X3))►(X2►(X1►X3))) 
3 (a) X2►((X2►X3)►X3) 
4 (2,3) ((((X2►X3)►X3)►(X1►X3))►(X2►(X1►X3))) 
5 (iv 1,4) ((X1►(X2►X3))►(X2►(X1►X3))) 
d: 
1 (ii) (#X1►(#X2► #X1)) 
2 (iii) ((#X2►#X1)►(X1► X2)) 
3 (iv 1,2) (#X1►(X1► X2)) 
e: 
1 (c) (##X1►(#X1►#X2)) 
2 (iii) ((#X1►#X2)►(X2►X1)) 
3 (iv 1,2) (##X1►(X2►X1)) 
4 (c 3) (X2►(##X1►X1)) 
5 (4) ((X2►(##X1►X1))►(##X1►X1)) 
6 (4,5) (##X1►X1) 
f: 
1 (d) (###X1►#X1) 
2 (iii) ((#X1►#X1)►(X1►X1)) 
3 (1,2) (X1►##X1) 
g: 
1 (iv) (X1►X2)►((X2►X3)►(X1►X3)) 
2 (b) (X1►X2)►((X2►X3)►(X1►X3))►(X2►X3)►((X1►X2)►(X1►X3)) 
3 (1,2) (X2►X3)►((X1►X2)►(X1►X3)) 
h: 
1 (iv) (##X1►##X2)►((##X2►X2)►(##X1►X2)) 
2 (c 1) (##X2►X2)►((##X1►##X2)►(##X1►X2)) 
3 (e) (##X2►X2) 
4 (2,3) ((##X1►##X2)►(##X1►X2)) 
5 (iv) (X1►##X1)►((##X1►X2)►(X1►X2)) 
6 (f) (X1►##X1) 
7 (5,6) ((##X1►X2)►(X1►X2)) 
8 (iv 4,7) ((##X1►##X2)►(X1►X2)) 
i: 
1 (iv) (#X2►#X1)►((#X1►(X1►X3))►(#X2►(X1►X3))) 
2 (c 1) (#X1►(X1►X3))►((#X2►#X1)►(#X2►(X1►X3))) 
3 (d) (#X1►(X1►X3)) 
4 (3,2) ((#X2►#X1)►(#X2►(X1►X3))) 
5 (iv) (#X2►X1)►((X1►(#X2►X3))►(#X2►(#X2►X3))) 
6 (c 5) (X1►(#X2►X3))►((#X2►X1)►(#X2►(#X2►X3))) 
7 (c) ((#X2►(X1►X3))►(X1►(#X2►X3))) 
9 (iv 6,7) (#X2►(X1►X3))►((#X2►X1)►(#X2►(#X2►X3))) 
10  (v) ((#X2►(#X2►X3))►(#X2►X3))) 
11  (iv) ((#X2►X1)►(#X2►(#X2►X3)))►(#X2►(#X2►X3))►(#X2►X3)),((#X2►X1)►(#X2►X3)))) 
12  (iv 9,11) (#X2►(X1►X3))►((#X2►X1)►(#X2►X3)) 
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13 (iv 4,12) (#X2►#X1)►((#X2►X1)►(#X2►X3)) 
14 (h) ((X1►X2)►(#X2►#X1)) 
15 (iv 14,15) (X1►X2)►((#X1►X2)►(#X3►X2)) 
16 (15) (X1►X2)►((#X1►X2)►(##(X1►X1)►X2)) 
17 (a) (##(X1►X1)►X2)►(##(X1►X1)►X2) 
18 (c 17) ##(X1►X1)►((##(X1►X1)►X2)►X2) 
19  (a) (X1►X1) 
20 (f 19) ##(X1►X1) 
21 (20,18) ##(X1►X1)►((##(X1►X1)►X2)►X2) 
22 (18,21) ((##(X1►X1)►X2)►X2) 
23 (g 22) ((#X1►X2)►(##(X1►X1)►X2))►((#X1►X2)►X2) 
24 (iv 15,23) (X1►X2)►((#X1►X2)►X2) 
j: 
1 (a) ((X1►X2)►(X1►X2)) 
2 (c) ((X1►X2)►(X1►X2))►(X1►((X1►X2)►X2)) 
3 (1,2) X1►((X1►X2)►X2) 
4 (h) (((X1►X2)►X2)►(#X2►#(X1►X2))) 
5 (iv 3,4) (X1►(#X2►#(X1►X2))) 
 
LEMMA 11. A set of sentences contains the representations of all C-valid c’s iff it contains all sentences 
of the following shapes:: 
 (i) the f,g-internalization of c, where c∈ C 
 (ii) Y►(X►Y) 
 (iii) (#Y►#X)►(X►Y) 
 (iv) (X1►X2)►((X2►X3)►(X1►X3)) 
 (v) (X►(X►Y))►(X►Y) 
and 
 (vi) it contains Y whenever it contains (X►Y) and X. 
PROOF: Let us prove that given (i)-(vi), the individual clauses of the previous lemma are fulfilled. I will 
distinguish the numbers of the clauses of the previous lemma from those of the current one by putting 
them into square brackets. The clauses [ii], [iii], [vii] and [viii] are unproblematic, they follow directly 
from (i), (ii), (v) and (vi). Hence we are left with proving [i], [iv], [v] and [vi]. [i] is Lemma 10(a). [iv] is 
an instance of  Lemma 10(h). As for [v], it follows from (iii) that the set contains (Xn►Y)►(#Y►#Xn). 
Now as it follows from Lemma 10(g) that it contains (X1►X2)►(X1►X3) whenever it contains (X2►X3), 
it must contain (Xn-1►(Xn►Y))►(Xn-1►(#Y►#Xn)), and, by repetitive application of the same step, 
((X1►...(Xn►Y)))►(X1►...(#Y►#Xn)). Now consider [vi]: as the set contains 
((Xi►Xi+1►...(Xn►Y)))►(Xi+1►(Xi►...(Xn►Y))) which is an instance of the formula in Lemma 10(c), 
and as it contains (Y►X1)►(Y►X2) whenever it contains (X1► X2) (which follows from Lemma 10(g)), 
it must contains ((Xi-1►(Xi►Xi+1►...(Xn►Y))))►(Xi-1►(Xi+1►(Xi►...(Xn►Y)))); and, by the reperitive 
application of the same step,  it must contain also 
(X1►...(Xi►(Xi+1►...(Xn►Y)))))►(X1►...(Xi+1►(Xi►...(Xn►Y)))). And as any permutation of a finite 
sequence is the result of a finite number of exchanges of consequent elements of the sequence, it contains 
(X1►...(Xn►Y))►(Xπ(1)►(...(Xπ(n)►Y)...)) for every permutation π of {1,...,n}. 
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LEMMA 10. Let (A1)-(A4)  and (MP) be in force for a language L. Then the ►,#-internalizations of 
(N1), (N2), (MI1), (MI2), and (MI3) are valid in L. 
PROOF: The internalizations are: 
 (N1I) S►##S 
 (N2 I) #S►#S 
 (MI1I) #S1►(S1►S2) 
 (MI2 I) S2►(S1►S2) 
 (MI3 I) S1►(#S2►#(S1►S2)) 
(N1I) is an instance of Lemma 10(f); (N1I) is is an instance of Lemma 10(a); (MI1I) is an instance of 
Lemma 10(d); (MI2 I) is an instance of (ii); and (MI3 I) is an instance of Lemma 10(i). 
 
Now we are ready to present the proof of the ‘Internalization Theorem’: 
 
PROOF OF THEOREM 6. Let L be a language, ► and # be a binary resp. a unary function from the set 
of sentences of L to the same set, and let the space of acceptable valuations of L be delimited by (MI1), 
(MI2), (MI3), (N1), (N2) and a set C of other constraints. Let L∗  be a language which is just like L with 
the exception that its space of acceptable valuation is delimited by the set of constraints containing the 
►,#-internalizations of all constraints from C plus the constraints (A1)-(A4) and (MP). As accodring to 
the previous lemma the ►,#-internalizations of (MI1), (MI2), (MI3), (N1), (N2) are valid in L∗ , the 
internalizations of all constraints of delimiting the space of acceptable valuations of the sentences of L are 
valid in L∗ . Let C* be C∪ {(MI1), (MI2), (MI3), (N1), (N2)}; then to be in force in L is to be C*-valid; and 
it follows from Lemma 11 that the internalizations of all C*-valid constraints are valid in L∗ . 
 
 
Conslusion 
 
The upshots of the above considerations is that the relstionship between the semantics and the axiomatics 
of the predicate calculus is more intricate then it might prima facie seem; and that we are not able to fix 
the denotations of the standard logical constants in terms of axioms. (This is of course, one of the sources 
of the relative popularity of the intuitionistic logic, whose relationship to axioms and rules is much more 
straightforward – see Peregrin, 2004). What we have gained as a by-product is a story about why the 
axioms of an axiomatic system of the classical propositional logic are such as they are: we can read them 
as outcomes of a proces of articulation of restrictions of acceptability of truth valuations. 
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