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Abstract. The topic of this paper is the question whether there is a logic which

could be justly called the logic of inference. It may seem that at least since Prawitz,

Dummett and others demonstrated the proof-theoretical prominency of intuitionistic logic,

the forthcoming answer is that it is this logic that is the obvious choice for the accolade.

Though there is little doubt that this choice is correct (provided that inference is construed

as inherently single-conclusion and complying with the Gentzenian structural rules), I do

not think that the usual justification of it is satisfactory. Therefore, I will first try to

clarify what exactly is meant by the question, and then sketch a conceptual framework in

which it can be reasonably handled. I will introduce the concept of ‘inferentially native’

logical operators (those which explicate inferential properties) and I will show that the

axiomatization of these operators leads to the axiomatic system of intuitionistic logic.

Finally, I will discuss what modifications of this answer enter the picture when more

general notions of inference are considered.
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1. Introduction

Granting ourselves some oversimplification, we may say that logicians divide
into model-theoreticians and proof-theoreticians. The former hold that it
is model theory (or formal semantics) which is primary from the intuitive
viewpoint (for it captures directly the meanings expressions have), whereas
the latter hold that it is proof theory (or axiomatics) which is primary (for
it captures the inferential patterns that are constitutive of what our words
mean). In this paper I will not take sides (though there is no point in denying
that my heart goes with the latter1), as I would prefer to concentrate on a
question relevant not only to those who take special interest in proof theory,
namely: “What is the logic of inference?”

The sense of the question is, to be sure, not quite clear; and it is to be
expected that the very task of clarifying it will lead us some way towards its
answer — an answer, moreover, which we may already know. For on what
I take to be the most straightforward construal of the question, I would not

1All my cards are laid on the table elsewhere (see [20].)
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dispute with those theoreticians who claim that it is intuitionistic logic that
is the logic most intimately related to inference. However, my aim here is
to present what I believe is a deeper and a more general substantiation for
it than is commonly on offer, and I will also discuss how this answer has to
be adjusted in line with any shifts in how the question is interpreted.

2. Is there an “inferential logic”?

Let me begin by discussing an example of substantiation of the prominent
role of intuitionistic logic vis-à-vis inferences and indicating why I think
it fails. Let us consider a rather old, but still influential paper of Zucker
and Tragesser [37], in which the authors claim to establish that it is the
intuitionistic connectives which are “adequate for inferential logic”. What
exactly do they mean by this?

The authors stipulate that “given a logic L, and a set of logical operators
of L, we say that S is adequate for L if every logical operation of L is explicitly
definable in terms of S”. In this sense we can obviously say that the set {¬,
∧} of classical logical operators is adequate for the whole of the classical,
truth-functional propositional calculus. But what about “inferential logic”?
They say: “By ‘inferential’ logic we mean logic formulated in a natural
deduction system, in which the meaning of each logical constant is supposed
to be given by its set of introduction rules.”

So the “adequacy problem” involves two sets of logical operators and a
notion of equivalence: the task is to show that each of the first set can be
equivalently rendered by those of the second set. In the case of classical
logic the situation is simple: the first set is constituted by all the truth-
functionally defined operators, the second one by ¬ and ∧, and the equiv-
alence in question consists in the fact that for any operator c of the first
group there is a tautology of the classical propositional calculus of the form

c(S1, . . . , Sn) ↔ F,

where F is a formula containing no other operators than ¬ and ∧.
Now, how is it with inferential logic? The first group of operators is obvi-

ously constituted by those which can be defined using the natural deduction
rules, and Zucker and Tragesser explicitly narrow them down to those which
can be defined using merely the introduction rules. But what is the second
group, and, especially, what notion of equivalence should we consider?

The authors say that it is “the set of logical constants {→, ∧, ∨, ¬}”
without specifying which version of the operators they mean (classical? intu-
itionist? any other?). This is rather surprising, especially in view of the fact
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that the claim is made to summarize the results of the paper; however, as the
second class is to be a subclass of the first, we must assume that what the
authors have in mind mean are →, ∧, ∨ and ¬ as defined within a natural
deduction system and with some charity we can assume that what is meant
is what is usually taken as the ‘most natural’ version of the definitions, i.e.
the intuitionistic version. (The authors also appear to be willing to use the
terms ‘inferential logic’ and ‘intuitionistic logic’ interchangeably).

But what is less clear is the notion of equivalence we should consider
now. What one would expect is that for any operator c, definable in terms
of the restricted natural deduction, there is a theorem of inferential logic of
the form

c(S1,. . . ,Sn) ↔ F,

where F is a formula containing only the intuitionistic→, ∧, ∨ and ¬. Again,
it is unclear what the nature of the ↔ is, but we will again assume that it
is the intuitionistic operator.

Note that this solves the “adequacy problem of inferential logic” within
the medium of the very same logic; hence it has compromised the possibility
of interpreting the result as proving, in the intuitive sense, that it is intu-
itionistic logic that is the logic of inference. The obvious objection is that
by using inferential logic as our metatheory we have smuggled in what was
to have been discovered.

Moreover, the authors’ argument raises further doubts. First, it is not
entirely clear whether there is a deeper reason for their restricting themselves
to operators defined by the standard form introduction rules, other than ease
of treatment. They do not explain how they can adopt this restriction and
at the same time continue talking about inferential logic in general.

Second, the actual way they carry out their proof also lacks clarity. Let
us look at the first case they consider within the proof, the case where a
propositional operator is defined by a single inferential rule:

[A11, . . . , A1k1 ] [An1, . . . , Ankn ]
. .
. ...................................... .
. .

B1 Bn

c(A11, . . . , A1k1 , . . . , An1, . . . , Ankn , B1, . . . , Bn, C1, . . . , Cm)

In this case, they simply state that “the meaning of c — or more exactly
of c(. . . ,Aij,. . . ,Bi,. . . ,Cl,. . . ) — is given by

(∗) (A11 →B1)∧. . .∧(A1k1 → B1)∧. . .∧(An1 → Bn)∧. . .∧(Ankn → Bn)”.
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The only substantiation they give of this claim is a reference to an as-
sumption stated earlier in the paper, namely that “The meaning of the con-
stant c is given by its set of introduction rules”. Now, if the interpretation
we have proposed for the authors’ claims earlier are to be accepted, then it
is, prima facie, strange to talk about “the meaning” of c. What we need to
prove is that, given c is introduced by the rule above, there is a formula F
containing as the only operators the intuitionistic →, ∧, ∨ and ¬, and such
that

c(A11,. . . ,A1k1 ,. . . ,An1,. . . ,Ankn ,B1,. . . ,Bn,C1,. . . ,Cm) ↔ F.

And as F is apparently meant to be (∗), what we have to do is to prove,
within the natural deduction system for intuitionistic logic, the formula

c(A11, . . . , A1k1 , . . . , An1, . . . , Ankn , B1, . . . , Bn, C1, . . . , Cm) ↔
((A11∧ . . . ∧A1k1) → B1)∧ . . . ∧((An1∧ . . . ∧Ankn) → Bn).

But surprisingly, they do not do anything like this. Can the reason be that
the proof is too obvious? Well, the indirect implication is indeed pretty
straightforward, but not so the direct one. It would amount to the transfor-
mation of the proof of c(A11,. . . ,A1k1 ,. . . ,An1,. . . ,Ankn ,B1,. . . ,Bn,C1,. . . ,Cm)
into the proof of ((A11∧. . .∧A1k1)→B1)∧. . .∧((An1∧. . .∧Ankn)→Bn). It is
clear how this is supposed to proceed: as the former is provable, and as we
assume that the only available proof is based on the introduction rule above
(which is what the authors express — oddly, in my view — by claiming that
“the meaning of c is given by its introduction rule”), we must suppose that
the premises of the proof are in force, and these premises establish the lat-
ter claim. This is a kind of ‘abductive reasoning’ which, though intuitively
clear, should, I think, be given some explicit form.

Thus it would seem that Zucker and Tragesser’s paper does not ade-
quately establish an answer for the question posed as the title of this paper.
And one important moral to draw from this discussion is that in order to do
better we need a more explicit framework — a neutral ground where we can
independently delimit both inferential systems and intuitionistic logic, and
within which we can then show how the latter ‘does justice’ to the former.

3. The requirement of harmony

Of course that filling some of the gaps I have just diagnosed within Zucker’s
and Tragesser’s paper is not too arduous. What appears to be implicit to
their treatment of logic — though it does not quite surface — is the re-
quirement of harmony between the ways logical operators are introduced
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and that in which they are eliminated. This requirement, endorsed already
by Gentzen [10], was brought to the fore of logicians’ attention especially
by Dummett [7] and it is now one of the most discussed foundational is-
sues of proof theory foundations. Let me present an argument provided by
Neil Tennant [34]. Tennant first lists the desiderata for inferentially defined
logical operators, and then shows that the desiderata are fulfilled by, and
only by, intuitionistic operators. (In fact, he votes for a relevant version of
intuitionistic logic, but we ignore this here.) The desiderata, according to
him, are (p. 319):

(1) analytic systematicity,
(2) separability,
(3) immediacy,
(4) harmony of introduction and elimination rules,
(5) compositionality.

(1) amounts to the fact that each operator is introduced by means of a finite
number of schematic rules; (2) to the fact that each of the rules contains
merely a single dominant occurrence of an operator; (3) establishes that each
rule is either an introduction rule, which contains the operator dominant
in the conclusion, or an elimination rule, which contains it dominant in a
premise; (4) that the introduction and elimination rules are in a precise sense
complementary; and (5) that the rules have the subformula property.

Now it is clear that it is the harmony requirement which is tantamount
to Zucker & Tragesser’s requirement that “the meaning of a constant is given
by its introduction rules”. Tennant spells this out in much clearer terms:

The introduction and elimination rules for any logical operator λ
should be framed in such a way that (i) in the statement of the
introduction rule for λ, the conclusion (with λ dominant) should be
the strongest that can be inferred under the conditions specified; and
(ii) in the statement of the corresponding elimination rule, the major
premise (with λ dominant) should be the weakest that can be used
in the way specified. (332–3)

The principle, as Tennant suggests, “serves to tailor the elimination rule to
a previously chosen introduction rule, or vice versa”. Hence if we encounter
λ within a proof, we know it must have been introduced in its canonical way,
and can reason back to the premises of its introduction rules, as done, in
effect, by Zucker and Tragesser.
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Hence Tennant shows that if we want logical operators which are not
only inferentially introduced, but also in a certain sense well-behaved, we
should restrict ourselves to the very ones Zucker and Tragesser are sug-
gesting, namely those which are introduced by means of the standard form
introduction rules (which are taken to ‘implicitly contain’ also the corre-
sponding elimination rules). And he indicates that any such operators are
reducible to the intuitionistic ones (which is what Zucker and Tragesser want
to prove explicitly).

There is nothing to be objected to in this line of argumentation. It is
based on the assumption that we should want a well-behaved logic — an
assumption which is surely reasonable. But in this paper I would like to
indicate that the question of the logic of inference might be answerable even
without it. But before I turn to this, let me make a digression. I will sketch
one possible answer to the question what is logic? — an answer that I deeply
believe is correct2, that I nevertheless will not argue for here. The reason
why I am going to sketch it here is that it will help us clarify the question
what is the logic of inference?.

4. Logical constants as tools of making inference explicit

The answer to the question what is logic? I want to sketch is essentially
due to Bob Brandom [3]: according to him, logical vocabulary of natural
language, which logic strives to explicate, is first and foremost a tool for
making explicit the rules implicit to our treating of concepts. According
to Brandom, what underlies both human language and logic are inferences.
Human language is structured in such a way that commitments to some
claims bring about commitments to other claims — i.e. that the former
ones entail the latter ones and thus the latter are correctly inferable from the
former. (In fact, Brandom claims that there is a still deeper layer constituted
by the concept of incompatibility.)

What we see as logical vocabulary is primarily a means of making ex-
plicit the proprieties implicit in our using language. Before we have “if . . .
then”, the inference from “This is a dog” to “This is a mammal” can only
be implicitly endorsed (or, as the case may be, violated), but once this con-
nective is at hand, this inference can be explicitly expressed in the form of
a claim, viz. “If this is a dog, then this is a mammal” (and with a more
advanced logical vocabulary perhaps further transformed into “Every dog is
a mammal”), and hence discussed w.r.t. its ‘appropriateness’ (and perhaps

2I have put forward some arguments in its favor elsewhere — see, e.g., [18].
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in the end rejected). Thus logical vocabulary helps us make the rules that
are intractably implicit in our practices explicit and discussable.

In this way, logical vocabulary appears as a means of ‘internalizing the
meta’. It allows us to say within a language what can otherwise be said
only about the language — i.e. within a metalanguage. This Brandomian
view of logic might look if not far-fetched, then at least at odds with what
logic is usually supposed to be. Is it a mere philosophical jugglery which
stems from a lack of sense for what (modern) logic really is? I would like to
indicate (without giving a systematic account) that it is not; in particular
that it is surprisingly consistent with the way logic was treated by some of
its founding fathers3. Thus, consider Frege’s ([8], p.5) famous introduction
of material implication:

Wenn A und B beurtheilbare Inhalte bedeuten, so gibt es folgende
vier Möglichkeiten:
1) A wird bejaht und B wird bejaht;
2) A wird bejaht und B wird verneint;
3) A wird verneint und B wird bejaht;
4) A wird verneint und B wird verneint.

A

B

bedeutet nun das Urtheil, dass die dritte dieser Möglichkeiten nicht
stattfinde, sondern eine der drei andern.4

Hence the implication is introduced to spell out, within his Begriffsschrift,
what may otherwise only be articulable within a metalanguage. Before we
have it, we can only abstain from denying B while asserting A (and pos-
sibly somehow sanction those who do not do so), but there is no way of
bringing this practice into the open and making it subject to criticism. In
contrast to this, once implication finds its way into the language, we are
enabled to express the abstention by a statement (which can be challenged,
justified etc.).

3I do not want to say that Brandom’s proposal is unprecedented — to a certain extent
it overlaps with the proof-theoretic approaches to logic (see, e.g. [30]), and especially with
the German constructivist tradition [15]. But I think Brandom has given it the most
thorough philosophical backing.

4“If A and B stand for contents that can become judgments, there are the following
four possibilities: (1) A is affirmed and B is affirmed; (2) A is affirmed and B is denied;
(3) A is denied and B is affirmed; (4) A is denied and B is denied. Now . . . stands for
the judgment that the third of these possibilities does not take place, but one of the three
others does.”
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The situation is similar with respect to quantifiers. Frege (ibid., p.19)
writes

In dem Ausdrucke eines Urtheils kann man die rechts von stehende
Verbindung von Zeichen immer als Funktion eines der darin vorkom-
menden Zeichen ansehen. Setzt man an die Stelle dieses Argumentes
einen deutschen Buchstaben, und giebt man dem Inhaltsstriche eine
Hhlung, in der dieser selbe Buchstabe steht, wie in

a Φ(a)
so bedeutet dies das Urtheil, da jene Function eine Thatsache sei,
was man auch als ihr argument ansehen möge.5

In this way, a quantified sentence becomes a shortcut for a metalinguistic
statement: a statement about the results of replacing a part of an object
language sentence by various (suitable) expressions. (Hence also to say that
some natural language expressions, such as “something” or “everything”,
can be regimented by such quantifiers, is to say that these expressions are
means of making some metalinguistic pronouncements, which hold about the
language, explicit within the language.)

Russell ([28], p. 480) takes, in this respect, a very close train of thought:
. . . everything and nothing and something (. . .) are to be interpreted
as follows:
C (everything) means ‘C (x ) is always true’;
C (nothing) means “‘C (x ) is false” is always true’;
C (something) means ‘It is false that “C (x) is false” is always true’.

Hence again, sentences with “everything”, “nothing” etc. are taken to ex-
press metalinguistic pronouncements; and their presence in a language thus
enables us to say in the language what holds about the language and what
is otherwise only expressible within a metalanguage.

Of course, the way from inferences to quantifiers is less straightforward
than that from inferences to implication — for implication may be thought
of as simply an internalization of inference, whereas the role of quantifiers
within the explicitating of inferences is much more complex and inseparable
from the role of some other constants. We will not deal with it in the current
paper; it is discussed by Brandom ([3], esp. Chapter 7).6

5“In the expression for a judgment, the complex symbol to the right of may always be
regarded as a function of one of the symbols that occur in it. Let us replace this argument
with a Gothic letter, and insert a concavity in the content-stroke, and make this same
Gothic letter stand over the concavity, e.g.: . . . . This signifies the judgment that the
function is a fact whatever we take its argument to be.”

6Cf. also [19].
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As I have already stressed, it it not my purpose here to try to vindicate
this view of logic. But I think that it can show us a way to a clarification of
the notion of “logic of inference” that is not only plausible, but also much
more susceptible to an explication than the one that seems to animate the
vague considerations of authors like Zucker and Tragesser. The clarification
that I have in mind is the following: The logic of inference is the logic of
operators the principal purpose of which is making inference explicit. In the
next section, we start to build a formal framework in which this clarification
will be given an unambiguous formal sense.

5. ‘Inferentially native’ operators

We have seen that the important precondition of dealing with the question
of the logic of inference adequately is the establishment of a general enough
framework. This is what we are about to do now. A propositional language
will be a set S (of entities called statements) plus a finite set of operations
on S. An inferential structure will be an ordered pair I=〈L, `〉, where L=
〈S, 〈o1, . . . , on〉〉 is a propositional language and ` is a relation between
finite sequences of elements of S and elements of S. Elements of S will be
called the statements of I and ` will be called the inference relation of I.
(Note that as n may be 0, L may, in effect, be just a plain set.)

Given an inferential structure I, an ordered pair the first constituent of
which (called the antecedent) is a finite sequence of statements and the sec-
ond constituent of which (called the consequent) is a statement will be called
an inference (of I ). An inference will be called valid if its antecedent and
its consequent stand in the relation ` . In this case the consequent will also
be said to be inferable from the antecedent. A statement which is inferable
from an empty sequence will be called a theorem (of I ). A metainference
over S will be an ordered pair the antecedent of which is a finite sequence
of inferences and the consequent of which is an inference.

An inferential rule (or simply a rule), resp. a metainferential rule (a
metarule), will be the name of an inference, resp. of a metainference with
some parts replaced by parameters7. We will employ the letters A,A1, A2,

7We assume that (some of) the elements of S have (‘proper’) names, and the operations
o1, . . . , on allow us to form their further (‘improper’) names. Thus, if ‘⊗’ is a name of
a binary operation and ‘A’ and ‘B’ are names of statements, then ‘A ⊗ B’ is a name
of a statement, namely of the statement which results from the application of ⊗ to A
and B. (Note that hence ‘A ⊗ B’ is not the element itself, but a name; in particular the
element itself need not consist of the three parts corresponding to the ones constituting the
names.) Replacing some parts of an expression denoting an inference (such as 〈〈A⊗B〉,B〉)
by parameters we gain an inferential rule, and similarly for metainferences.



272 J. Peregrin

. . . , An, . . . , B, C . . . as parameters replacing names of statements, and
X, Y , Z, . . . as those replacing finite sequences of names of statements.
(Hence ‘〈〈A⊗B〉,B〉’ will be an inferential rule, and ‘〈〈〈〈A〉,C 〉, 〈〈B〉,C 〉〉,
〈〈A⊗B〉,C 〉〉’ a metainferential rule. The quotes will be omitted.) An infer-
ential rule with an empty antecedent will be called an axiom. An instance
of a rule (metarule) over S is any inference (metainference) over S whose
name can be obtained from the rule (metarule) by a systematic replace-
ment of parameters by appropriate names. (Thus, the set of instances of a
rule (metarule) constitutes a function and the rule (metarule) can also be
identified with this function.)

What will interest us from our logical perspective are especially infer-
ential structures generated by finite means (and especially ways of building
such structures). To delimit these, we need more conceptual machinery. An
inferential basis will be an ordered triple 〈L, R, M 〉, where L = 〈S, O〉 is a
propositional language, R is a finite set of inferential rules over S, and M is
a finite set of metainferential rules over S. The notion of inference valid over
a basis is defined in the following obvious recursive way:

(i) an instance of an inferential rule from R is valid;
(ii) if 〈〈R1, . . . , Rn〉, R〉 is an instance of a metainferential rule from M

and all of R1, . . . , Rn are valid, then so is R;
(iii) nothing else is a valid inference.

We will say that a basis generates the structure consisting of L plus the
relation constituted by all the inferences valid over it. Elements of R will be
called the basic rules of the basis, whereas those of M will be called its basic
metarules. Two inferential bases with the same underlying language will be
called equivalent iff they generate identical structures.

An inferential rule will be called admissible for a structure I iff all its
instances are valid in I. If 〈X,A〉 is admissible for I, then we will write X `I A;
and we will leave out the subscript accompanying ` where no confusion
would be likely to arise. A metainference is valid in I iff either at least one
of the inferences in its antecedent is not valid in I, or the inference in its
consequent is. A metarule is admissible for I iff all its instances are valid in
I. If 〈〈R1,. . . ,Rn〉,R〉 is a metarule admissible for I, then we will write

R1, . . ., Rn

R
I

and we will again leave out the subscript where feasible. It is clear that all
basic rules and all basic metarules of a basis are admissible for the structure
generated by the basis. Suppose now that B is inferable from A, i.e. that
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A ` B.

What would it mean to make this fact explicit within the underlying struc-
ture? We need a statement which says that B is inferable from A. But what
does it take for a statement of such a structure to say this? Presumably
to be true iff B is inferable from A. But the relation ` is unchanging and
hence the explicitating claim would be true necessarily; and the counterpart
of necessary truth within the structure is clearly theoremhood.

Hence to make the inferability of a statement from another statement
explicit is to have, for every pair of statements A and B, a statement which
is a theorem iff A ` B. Let us form the name of such an ‘explicitating’
statement by means of the sign ., hence let, for every A and B,

(∗) A ` B iff ` A B B.

We will call the operator defined in this way a deductor (for the inferential
structure). (Note the indefinite article; (∗) can be obviously satisfied by
rather different operators.) Given this, to claim ABB (as a necessary truth,
i.e. ` ABB) is to claim that B is inferable from A.

It is clear that (∗) is valid for every A and B iff the following two
metarules are admissible:

(DED) A ` B
` ABB (CODED) ` ABB

A ` B
This yields us also the answer to the question of how to build a structure
with a deductor: it is clearly enough to have the binary operator and to
include (DED) + (CODED) into the basis.

However, . allows us to say that a statement is inferable from another
statement, but not yet that it is inferable from a sequence of statements. An
obvious way how to make this explicit is by way of introducing, for every
pair of statements A and B, another new statement, say A⊗B, such that

X,A, B, Y ` C iff X,A⊗B, Y ` C,

Let us call the new operator ⊗ the amalgamator. The definition of amal-
gamator can again be given in terms of admissibility of a pair of metarules:

(AMLG) X,A,B,Y ` C
X,A⊗B,Y ` C (DEAMLG) X,A⊗B,Y ` C

X,A,B,Y ` C

If X is the sequence A1A2. . .An−1An, then we will write⊗X as the shorthand
for (A1⊗(A2⊗(. . . (An−1 ⊗An))). Now it is obviously the case that

X ` A iff ` (⊗X)A

However, there is also an alternative to the introduction of the amalgamator;
we can also make the deductor recursive, by requiring
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(∗∗) X,A ` B iff X ` A B B,

i.e. the admissibility of

(DED*)
X, A ` B

X ` A B B
(CODED*)

X ` A B B

X, A ` B

Hence both the deductor and the amalgamator are operators which
emerge as natural tools once we set out to make the relation of inference
explicit8. Are there some other similarly ‘inferentially native’ operators?

The ones we have introduced so far let us explicitate claims to the effect
that a statement is inferable from other statements. But we might also want
to claim the contrary: namely that a statement is not inferable from other
statements. If we write X0A for “A is not inferable from X ”, then we might
want to have an ‘anti-deductor’ 7 such that

X, A 0 B iff X ` A 7 B.

However, in contrast to the previous cases, it is wholly unclear how this
could be turned into inferential (meta)rules which could be integrated into
a basis for an inferential system. Therefore, we leave the matter at this for
now and we will return to it later.

6. Standard inferential structures

We have defined inferential structure simply as a propositional language plus
any kind of relation between finite sequences of statements and statements;
and we have restricted our attention to the finitely generated structures.
(What our framework is supposed to explicate is the fact that language-
using creatures would stipulate — not necessarily by an explicit convention,
possibly by an establishment of a praxis — inferential rules and thereby
establish inferential relationships. This means that what we should concen-
trate on are structures generated by finite collections of rules.) However,
should we not be even more restrictive?

It seems that we are not interested in relations generated from the basic
rules in just any way, but rather in the definite relation of ‘provability by
means of the basic rules’. And the relation of provability by means of the
collection R of rules is precisely the admissibility of the Gentzenian structural
metarules9:

8They are what Avron [1] called the internal implication and conjunction, respectively.
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(REF) A ` A

(EXT) X,Y ` A
X,B,Y ` A

(CON) X,A,A,Y ` B
X,A,Y ` B

(PERM) X,A,B,Y ` C
X,B,A,Y ` C

(CUT) X,AY ` B Z ` A
X,Z,Y ` B

Again, let us make things more precise. Let S be a set and R a collection
of inferential rules over S. A proof of A from X by means of R (where A∈S
and X is a finite sequence of elements of S ) is defined in the expected way:
it is a finite sequence of elements of S which ends with A and whose every
element is either an element of X or is the value of a rule from R for some
arguments which all occur within the sequence earlier. If there is a proof of
A from X, then A will be said to be provable from X. Given a basis, we will
say that A is provable from X over it iff A is provable from X by means of
its basic rules.

Now we can formulate:

Theorem 6.1.10 A is provable from X by means of R iff X ` A is derivable
from R by means of (REF), (EXT), (CON), (PERM) and (CUT).

Proof. Let A be provable from X by means of R. Then there is a sequence
A1,. . . ,An of statements such that An = A and every Ai is either an element
of X or is inferable by a rule from R from statements which are among
A1,. . . ,Ai−1. If n=1, then there are two possibilities: either A∈X and then
X ` A in force of (REF) and (EXT); or A is an axiom (i.e. a rule with
an empty antecedent) of R, and then ` A and hence X ` A in force of
(EXT). If n>1 and An is inferable from some Ai1 ,. . . ,Aim (where i1<n,. . . ,
im<n) by a rule from R, then Ai1 ,. . . ,Aim ` A, where X ` Aij for j=1,. . . ,m.

9The reason why we take also the first one as a metarule (with the empty antecedent),
rather than a rule, is purely simplicity of exposition. Nothing relevant for our considera-
tions is affected by this move. Note that a metarule with an empty antecedent is admissible
just in case its consequent is an admissible axiom. Hence, an inferential basis 〈L, R, M〉 is
equivalent to 〈L, ∅, M∪R*〉, where R* consists of metarules with empty antecedents and
the elements of R as consequents.

10Versions of this theorem were proved by various authors; see, e.g. [29].
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Then X,. . . ,X ` A in force of (CUT), and hence X ` A in force of (PERM)
and (CON).

Now, conversely, let X ` A be derivable from R by means of (REF),
(EXT), (CON), (PERM) and (CUT). We will show that A is provable from
X by induction. If X ` A is an instance of a rule from R, then its provability
from X is obvious. Now assume that X ` A is derivable by one of (REF),
(EXT), (CON), (PERM) and (CUT) from inferences for which the inductive
assumption holds. Suppose that it is derivable by (EXT). Then it must be
the case that X ` A is derivable from a X′ ` A′ such that A′ is provable
from X′ by means of R, A′ is A, and all elements of X′ are elements of X.
But then the proof of A′ from X′ is also the proof of A from X. The case of
the other structural metarules is equally easy.

We will say that an inferential structure is standard if it admits the
structural rules (i.e. (REF), (EXT), (CON), (PERM) and (CUT)). We will
say that the basis is standard iff its set of basic metarules contains the
structural rules; we will say that it is strictly standard iff the set coincides
with the set of the five structural rules. (It is clear that a structure generated
by a standard base is standard.) Using this terminology, we can say that the
bases we should concentrate on are the strictly standard ones. A structure
generated by the strictly standard structure with the set R of basic rules
will be called based on R.

Note that Theorem 6.1 indicates that a strictly standard basis thus
amounts to what is usually seen as an axiomatic system or a Hilbertian
calculus. It is based on a collection of axioms (those of its inferential rules
which have an empty antecedent) plus a collection of rules (the rest of in-
ferential rules); and its theorem are those statements which are probable, in
the usual sense, from the axioms by means of the rules.

If we now want to build a strictly standard inferential basis establish-
ing the native inferential operators (hence an axiomatization of the logic of
inference), we need to characterize all the operators by rules (rather than
metarules). Our next task, hence, is to try to turn the metarules we have
used to characterize the operators into rules. Before we take it up, let us note
a corollary of Theorem 6.1, namely that within certain inferential structures,
provability comes to coincide with inferability:

Corollary 6.2. In a structure generated by a strictly standard base with
(MP) admissible, A is provable from X iff X ` A.

Proof. Let A be provable from X by means of the basic rules of the struc-
ture. Then, in force of Theorem 1, the inference 〈X,A〉 is derivable from
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these rules by means of the structural metarules and hence is valid. Let,
conversely, X ` A. Then A is provable from X by means of (MP).

7. Deductor

Let us start with the deductor. It is easily seen that if we restrict ourselves
to standard structures, (CODED*) becomes equivalent to the modus ponens
inferential rule:

(MP) A.B,A ` B.

This is spelled out by the following theorem:

Theorem 7.1. Within a standard inferential structure, (CODED*) is ad-
missible iff (MP) is.

Proof.

(CODED*) ⇒ (MP)
1. A.B ` A.B (REF)
2. A.B,A ` B from 1 by (CODED*)
(MP) ⇒ (CODED*)
1. X ` A.B assumption
2. A.B,A ` B (MP)
3. X,A ` B from 1,2 by (CUT)

However, things are not that easy with (DED*): there does not appear to
be an inferential rule or a collection of inferential rules which would be equiv-
alent to it. However, for a structure generated by a strictly standard basis
there is nevertheless a possibility of securing the admissibility of (DED*)
by stipulating inferences. The point is that as what (DED*) claims is that
whenever X,A ` B, then also X ` A.B, it would be enough to stipulate
X ` A.B for every particular case when X,A ` B. And as for a structure
generated by a strictly standard basis, X,A ` B just in case this is an in-
stance of a basic rule, or it is derivable from basic rules by means of the
structural metarules, it would be enough to stipulate this for every basic
rule and to secure that this property is preserved by all metarules.

The internalization of the inference A1,. . . ,An ` B will be the statement
A1.(A2.(. . . (An.B))), which we will also abbreviate as A1,. . . ,AnIB. (The
internalization of an inference with the empty antecedent will be the very
same inference.) An inference A1,. . . ,An ` B will be called internalized if
its internalization is a theorem, i.e. iff ` A1,. . . ,AnIB. A rule is internalized
if all its instances are. Given this, we can prove the following lemma:
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Lemma 7.2. (DED*) is admissible in a structure generated by an inferential
basis with (MP) admissible iff each of its basic rules is internalized and
each of its basic metarules preserves internalizedness, i.e. maps internalized
inferences always also only on inferences that are internalized.

Proof. Let (DED*) be admissible. Then all valid inferences are internal-
ized. Thereby, also all admissible rules are internalized (because a rule is
internalized iff all its instances are). Moreover, as ` A1,. . . ,AnIB yields,
via (MP), the provability of B from A1,. . . ,An, also all internalized infer-
ences are, in force of Corollary 6.2, valid and hence all internalized rules are
admissible. Hence also all inferences on which metarules map internalized
inferences are internalized: every internalized inference is, we saw, valid, and
hence it is bound to be mapped, by a metarule, on a valid, and hence an
internalized inference.

Conversely, if all basic rules are internalized and all basic metarules pre-
serve internalizedness, then every valid inference is internalized; and hence
(DED*) holds.

What does it take for the structural metarules to preserve internalized-
ness? The following lemma offers an answer:

Lemma 7.3. The structural metarules preserve internalizedness iff (A1)-
(A5) are admissible:

(A1) ` A.A

(A2) ` B
` A.B

(A3) ` A,AIB
` A.B

(A4) `X,A,B,YIC
`X,B,A,YIC

(A5) `XIA`A.B
`XIB

Proof. A straightforward transcription of what it takes for (REF), (EXT),
(CON), (PERM) and (CUT) to preserve internalizedness yields:

(A1) ` A.A

(A2*) `X,YIB
`X,A,XIB
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(A3*) `X,A,A,YIB
`X,A,YIB

(A4) `X,A,B,YIC
`X,B,A,YIC

(A5*) `XIA `Y,A,ZIB
`Y,X,ZIB

Now it is easy to see that in view of (A4), we can reduce (A2*), (A3*)
and (A5*) to the simpler (A2), (A3) and (A5), respectively.

However, from the viewpoint of our aim, namely reduction of metarules
to rules, Lemma 7.3 is not yet very useful. (A2)-(A5) are still metarules;
so we are as yet no better off than with DED* itself. The following theo-
rem gives rules which are capable of guaranteeing the admissibility of these
metarules:

Lemma 7.4. If a standard inferential structure admits (MP) plus
(.1) ` B.(A.B)
(.2) ` (A.(A.B)).(A.B)
(.3) ` (C.A).((A.B).(C.B)),
then (A1)-(A5) are admissible in it.

Proof. It is clear that the admissibility of (A2), (A3), (A4) and (A5) is
secured by

(B2) B ` A.B ;
(B3) A,AIB ` A.B ;
(B4) X,A,B,Y IC ` X,B,A,Y IC ; and
(B5) XIA, A.B ` XIB,
and hence by
(C2) ` B.(A.B);
(C3) ` (A,AIB) (A.B);
(C4) ` (X,A,B,Y IC ).(X,B,A,Y IC ); and
(C5) ` (XIA).((A.B).(XIB)).
Now it can easily be seen that (C4) can be reduced to (C4*) and (C5)

to (C5*):
(C4*) ` (A,BIC )(B,AIC );
(C5*) ` (C.A).((A.B).(C.B));
and that (A1) and (C4*) then follow from (C2), (C3) and (C5*).

Hence, given a structure generated by a strictly standard inferential basis,
if (.1), (.2) and (.3) are admissible for it, then (DED*) is also admissible
once all its basic inferences are internalized. This means that we can make
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. into a deductor by stipulating (MP), (.1), (.2) and (.3), and by replacing
every basic rule X ` A by ` XIA. (As ` XIA yields X ` A via (MP),
once we add the former, we can delete the latter.)

Thus we have seen that within a structure generated by a strictly stan-
dard inferential basis, . is a deductor if (MP), (.1), (.2), (.3) and the
internalizations of all basic rules are admissible. Now we will show that it is
a deductor only if this condition is fulfilled.

Lemma 7.5. If . is a deductor of an standard inferential structure, then
(.1), (.2) and (.3) are admissible for the structure.

Proof. Let us assume that one of (.1), (.2) and (.3) is not admissible. Let
it be, for example, (.2) (the other cases are analogous). As . is a deductor,
(MP) is admissible and hence B is provable from A.(A.B) and A. Hence,
in view of Corollary 6.2,

A.(A.B),A ` B.

(2) now follows by means of (DED*).

Theorem 7.6. . is a deductor of an inferential structure generated by a
strictly standard base iff the structure admits (MP), (.1), (.2) and (.3) and
all its basic rules are internalized.

Proof. Let . be a deductor. Then all its basic rules are internalized in
force of (DED*). Moreover, in force of Theorem 7.1, the structure admits
(MP). Also, in force of Lemma 7.5, it admits (.1), (.2) and (.3).

Conversely, let the structure admit (MP), (1), (2) and (3) and let all
its basic rules be internalized. Then, in force of Theorem 7.1, it admits
(CODED*). Also, in force of Lemma 7.4, it admits (A1)-(A5), and hence,
in force of Lemma 7.3, its structural metarules preserve internalizedness.
Hence, as the structural metarules are the only metarules and as all the
rules are internalized, (DED*) is admissible.

If we now look at . as at an implication, then we can see that what
we have reached in this way is the axiomatization of the so called positive
logic11. It constitutes an axiomatization of the purely implicative part of the
intuitionistic propositional calculus; and also of the purely implicative part
of the classical propositional calculus — if “implicative part” is interpreted
as referring to what is provable from purely implicative axioms. (Should it
be interpreted as referring to all purely implicative theorems, then the situa-
tion would be different, for within classical logic, unlike within intuitionistic

11Hilbert and Bernays ([13], Supplement III).
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logic, negation is not conservative over implication, and hence the class of
implicative theorems exceeds the class of statements provable from purely
implicative axioms.)

8. Amalgamator
Now let us consider the amalgamator. It is not difficult to show that within
a standard inferential structure, (AMLG) becomes equivalent to (ICN),
whereas (DEAMLG) to (ECN1) plus (ECN2):

(ICN) A,B ` A⊗B
(ECN1) A⊗B ` A
(ECN2) A⊗B ` B

Theorem 8.1. For a standard inferential structure, (AMLG)
and (DEAMLG) are admissible iff (ICN), (ECN1) and (ECN2) are.

Proof.

(ICN) ⇒ (DEAMLG)
1. X,A⊗B,Y ` C assumption
2. A,B ` A⊗B (ICN)
3. X,A,B,Y ` C from 2 and 1 by (CUT)
(DEAMLG) ⇒ (ICN)
1. A⊗B ` A⊗B (REF)
2. A,B ` A⊗B from 1 by (DEAMLG)
(ECN) ⇒ (AMLG)
1. X,A,B,Y ` C assumption
2. A⊗B ` A (ECN1)
3. A⊗B ` B (ECN2)
4. X,A⊗B,A⊗B,Y ` C from 1, 2, 3 by (CUT)
5. X,A⊗B,Y ` C from 4 by (CON)
(AMLG) ⇒ (ECN1)
1. A ` A (REF)
2. A,B ` A from 1 by (EXT)
3. A⊗B ` A from 2 by (AMLG)
(AMLG) ⇒ (ECN2)
1. A ` A (REF)
2. A,B ` B from 1 by (EXT)
3. A⊗B ` B from 2 by (AMLG)

Now if we have also the deductor, we have a way of making all inferential
rules, with the exception of modus ponens, explicit, i.e. of reducing them to
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axioms. (And, in fact, we must do so in order to keep (DED*) valid.) As
for those constitutive of the amalgamator, i.e. (ICN), (ECN1) and (ECN2),
they are transformed into

(⊗1) ` A.(B.(A⊗B))
(⊗2) ` A⊗B.A
(⊗3) ` A⊗B.B

9. Anti-deductor?

We have noticed that besides the deductor and the amalgamator, which
play their respective parts in explicitating inferability, we might consider
an operator which would explicitate noninferability just like the deductor
explicitates inferability,

X,A 0 B iff X ` A7B,

but we have not seen any way of transforming this into the kind of rules or
metarules we are after.

Moreover, such an operator would not be feasible at all. It is clear that
non-deducibility does not admit weakening, in the sense that a conclusion’s
not being deducible from premises surely does not entail its not being de-
ducible from more premises. But the presence of the antideductor would
force just this: if X,A 0 B yields X ` A7B, then it yields also X,C ` A7B,
and hence X,A,C 0 B. (In particular, if A 0 B, then A,B 0 B, which is
hardly what we could accept12.)

It follows that the fact that a statement is not inferable from other state-
ments should not be a premise of the introduction rule of a logical operator.
But what might still be possible is to consider a weakened version of the
project of an anti-deductor, which would not feature non-inferability in this
problematic way. We can consider the possibility that what we will make
explicit in terms of A7B would be not that B is not inferable from A, but
that B cannot become inferable from A.

But could this happen at all? Are we in some cases warranted in requiring
that an inferential link between A and B cannot be forged as a matter
of principle? Well, a situation which we should surely want to avoid is a
breakdown of the whole inferential structure. Hence if an extension of an
inferential relation could bring about such a breakdown, we had better block
it. Can this happen? Can an inferential structure ‘break down’?

12I owe this observation to Greg Restall.
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An inferential structure is usually constructed with the goal of capturing
inferential links making up a real language. The goal, however, may not
be achieved: the structure may fail to capture the intended language ade-
quately. But of course this does not prevent it from capturing another (real
or possible) language. Is there a way in which an inferential structure can
be a complete failure?

It would surely be such a failure if it were trivial. A structure with an
empty inference relation is, from this viewpoint, clearly anomalous. And the
same holds for a structure in which everything is inferable from everything.
Structures like these are clearly worthless; and we should avoid turning ours
into one such. Hence the situation in which making A inferable from X
would result in making everything inferable from everything (it is clear that
it cannot result in making nothing inferable from nothing!) should make us
block the inference. Therefore, writing “X ` ⊥” for everything is inferable
from X (or X is inconsistent), we might, coming back to our vague notion
of an anti-deductor, want at least

(A5*) B ` ⊥ ` A
` A7B

and more generally

X,B ` ⊥ X ` A
X ` A7B .

(As for the latter, it is important to realize that the intuitive sense of
X ` A7B is not “B should not be inferable from X and A”, but rather “pro-
vided all elements of X are theorems, B should not be inferable from A”.)

Moreover, it seems that if B ` ⊥, we should also have to block the very
possibility of ` B, wherefore we would need not an anti-deductor, but a
unary operator ∅ such that

B ` ⊥
` ∅B

and, more generally

X,B ` ⊥
X ` ∅B

(Again, it is important to realize that X ` ∅B should not be read as “B
should not be inferable from X ”, but rather “if all elements of X are theo-
rems, then B should not be a theorem”.)

Let us call an operator marking potential inferences which would lead to
the fatal explosion of the inference relation an explosion-detector. Hence an
explosion-detector ∅ is governed not only by
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(ED) X,B ` ⊥
X ` ∅B

but also by the converse

(COED) X ` ∅B
X,B ` ⊥

It is easy to see that once we have an explosion-detector∅ and a deductor, we
can define a (sort of) anti-deductor in their terms: A7B can be a shorthand
for ∅(A.B).

However, let us stress we are still only half way to the definition of the
explosion-detector: ‘X ` ⊥’ does not denote an inferential rule, it is merely
our shortcut for ‘X ` A for every A’. In some contexts it would be possible to
replace ‘X ` ⊥’ simply by ‘X ` A’ (where A is not a constituent of X ), but
this would clearly not work in the position of the antecedent of a metarule:

X,B ` A
X ` ∅B

does not state that if everything is inferable from X and B, then ∅B is
inferable from X, but rather that this is the case if anything (i.e. at least
one statement) is inferable from X and B. Also it is not possible to replace
‘X ` ⊥’ by all inferences of the form X ` A — for these are infinite in number
(unless our language is finite, which is clearly not an interesting case).

There is the well-known easy way out of this: namely to start to see ‘⊥’
as a new logical constant (‘nullary operator’) characterized by the rule

(EXPL) ⊥ ` A

Given this, we can construe (ED) and (COED) as fully fledged metarules13.

13This is, in a sense, a sleight of hand – a more straightforward way would be to accept
incompatibility as a new primitive concept and ‘X ` ⊥’ as a new piece of primitive notation
(then perhaps better written as ‘⊥X ’ — cf. [21]). As Tennant [33] argues, since inference
is to record truth-transmission, X ` A makes nontrivial sense only if there is something
to transmit from X to A, i.e. if X is capable of being true at all. From this vantage
point, marking inconsistency is a task naturally instrumental to the task of marking truth-
transmission, i.e. inference; and hence the introduction of an inconsistency marker is a
natural continuation of introducing a deductor. Moreover Brandom ([4], Chapter 6),
following Wilfrid Sellars, claims that the concept of inconsistency, or the interdefinable
concept of incompatibility, should be seen as more fundamental than the concept of infe-
rence. This is because the ‘language game’ of giving and asking for reasons that gives rise
to logical vocabulary is fuelled by the fact that we can both give reasons ourselves, i.e.
display statements from which a given statement is inferable, and also challenge others
to do so, i.e. display statements which are incompatible with the given one. (To see
the concept of incompatibility as primary w.r.t. that of inference is then to say that A
is correctly inferable from X iff whatever is incompatible with X is also incompatible
with A.)
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(It is clear that once we do this, (ED) and (COED) become the respective
instances of (DED) and (CODED) so that the whole ‘work of explosion-
detecting’ becomes loaded on ⊥.)

Within the framework of a standard inferential structure, we can reduce
(COED) to

(COED*) ∅A,A ` B :

Theorem 9.1. Within a standard inferential structure, (COED) is admis-
sible iff (COED*) is.

Proof.

(COED*) ⇒ (COED)
1. X ` ∅A assumption
2. X,A ` B from 1 and (COED*) by (CUT)
3. X,A ` ⊥ from 2.
(COED) ⇒ (COED*)
1. ∅A ` ∅A (REF)
2. ∅A,A ` ⊥ from 1 by (COED)
3. ∅A,A ` B from 2. and (EXPL) by (CUT)

Moreover, in the presence of a deductor, we can reduce (ED) to (ED*) (to
simplify formulas, we accept the usual assumption that unary operators take
precedence over binary ones):

(ED*) A.B,A.∅B ` ∅A

Theorem 9.2. Within a standard inferential structure which admits
(COED*), (ED) is admissible iff (ED*) is.

Proof.

(ED*) ⇒ (ED)
1. X,A ` B from the assumption
2. X ` A.B from 1 by (DED*)
3. X,A ` ∅B from the assumption
4. X ` A.∅B from 3 by (DED*)
5. X,X ` ∅A from 2, 4 and (ED*) by (CUT)
6. X ` ∅A from 5 by (PERM) and (CON)
(ED) ⇒ (ED*)
1. A.B,A ` B (MP)
2. A.∅B,A ` ∅B (MP)
3. A.∅B,A,AAB,A ` from 1, 2 and (COED*) by (CUT)
4. AAB,A.∅B,A ` from 3 by (PERM) and (CON)
5.A.B,A.∅B ` ∅A from 4 by (ED)
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Finally, we must internalize (COED*) and (ED*), i.e. recast them as

(∅1) ` ∅A.(A.B)
(∅2) ` (A.B).((A.∅B).∅A)

If we now summarize the inferential rules which are required to constitute our
three native inferential operators within the context of a standard inferential
structure, we can say that . is a deductor, ⊗ is an amalgamator and ∅ is an
explosion-detector iff the following inferences are admissible (and all basic
inferences are internalized — e.g. there are no additional inference rules,
only axioms):

(MP) A,A.B ` B
(.1) ` B.(A.B)
(.2) ` (A.(A.B)).(A.B)
(.3) ` (C.A).((A.B).(C.B))
(⊗1) ` A.(B.A⊗B)
(⊗2) ` (A⊗B).A
(⊗3) ` (A⊗B).B
(∅1) ` ∅A.(A.B)
(∅2) ` (A.B).((A.∅B).∅A)

It is easy to see that they make up an axiomatization of the intuitionistic
propositional calculus, with . acting as implication, ⊗ as conjunction and
∅ as negation. Hence, what we have shown is that the native inferential
operators coincide (within the ‘normal’ environment, i.e. within standard
inferential structures) with the intuitionistic ones. Thereby we reach the
expected result: it is intuitionistic logic which is the logic of inference.

10. Multi-conclusion inference?

So far we have taken for granted: (1) that inference is a relation between
finite sequences of statements and statements; and (2) that it is standard,
i.e. that it complies with the Gentzenian structural rules. (It is clear that
given (2), we can replace the talk of finite sequences in (1) by the talk of
finite sets.) What if we suspend these assumptions?

Let us consider (1) first. It is well known that many logicians follow
Gentzen [10] in taking inference as a relation between finite sequences of
statements and finite sequences of statements. And though this shift might
appear as an ad hoc means of vindicating classical logic, it is not without
sophisticated defenders14. Here we are not going to contribute to the dis-
putes about the naturalness or reasonableness of multi-conclusion inference;
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we merely want to see what kinds of changes or modifications of our above
conclusions its acceptance would effect. What comes to mind first is that in
analogy to the amalgamator, the multi-conclusion inference would invite us
to introduce its analogue on the right; namely the operator ⊕ such that

X ` Y,A,B,Z iff X ` Y,A⊕B,Z

Of greater interest is that it offers us more possibilities for defining the
deductor: besides our (DED) and (CODED), we could consider also the
more general

(DED+) X,A ` B,Y
X ` A.B,Y (CODED+) X ` A.B,Y

X,A ` B,Y

And it is well-known (see, e.g., [6]) that this makes a difference: for
example, if is introduced by means of (DED+) + (CODED+), though not if
it is introduced by means of (DED) + (CODED), it holds that

(PL) (A.B).A ` A

That this does not hold for a deductor introduced by (DED) + (CODED)
follows from the fact that this deductor, as we have seen, yields the intu-
itionist implication, whereas PL amounts to Peirce’s Law, notorious for be-
ing valid classically, but not intuitionistically. We will prove that it does
hold for . introduced in terms of (DED+) + (CODED+); but first we must
generalize our concept of standardness from single- to multiple-conclusion
inference. The structural rules with which the multiple-conclusion inference
must comply in order to be standard are obvious:

(REF) X ` X

(EXT) X,Y ` Z
X,A,Y ` Z

X ` Y,Z
X ` Y,A,Z

(CON) X,A,A,Y ` Z
X,A,Y ` Z

X ` Y,A,A,Z
X ` Y,A,Z

(PERM) X,A,B,Y ` Z
X,B,A,Y ` Z

X ` Y,A,B,Z
X ` Y,B,A,Z

(CUT) X,A,Y ` Z U ` V,A,W
X,Y,U ` Z,V,W

14See, e.g., [27].
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Now we can prove the promised theorem.

Theorem 10.1. If (DED+) and (CODED+) are admissible for an infer-
ential structure, then so is (PL).

Proof.

1. (A.B).A,A.B ` A (MP)
2. A ` A (REF)
3. A ` B,A from 2. by (EXT)
4. ` A.B,A from 3. by (DED+)
5. (A.B).A ` A,A from 1. and 4. by (CUT)
6. (A.B).A ` A from 5. by (CON)

The fact that (DED+) + (CODED+) validate Peirce’s law indicates that
they, in contrast to (DED) + (CODED), would lead us to classical impli-
cation. And this is indeed the case. Hence we have two kinds of deductors,
depending on whether or not we restrict ourselves to the single-conclusion
inference. (Another one, of a relevantist kind, would be defined by means of
the mere A ` B iff ` A.B.)

The situation is similar with respect to the explosion-detector (‘nega-
tion’). We have at least three possibilities for capturing the intuitive idea
underlying it:

(ED−) B `
` ∅B (COED−) ` ∅B

B `

(ED) X,B `
X ` ∅B (COED) X ` ∅B

X,B `

(ED+) X,B ` Y
X ` ∅B,Y (COED+) X ` ∅B,Y

X,B ` Y

It is again clear that it is only the last version of the definition that allows
us to prove the law of double negation, and hence that it introduces the
classical negation:

Theorem 10.2. If (ED+) and (COED+) are admissible for an inferential
structure, then so is ∅∅A ` A.

Proof.

1. A ` A (REF)
2. ` ∅A,A from 1. by (ED+)
3. ∅∅A ` ∅∅A (REF)
4. ∅∅A,∅A ` from 3. by (COED+)
5. ∅∅A ` A from 2. and 4. by (CUT)
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This indicates that for multi-conclusion inference, classical logic is as
natural as the intuitionist one for the single-conclusion inference15.

11. Logical operators as structural markers

Došen [5] proposed seeing logical operators as ‘punctuation marks’. This is a
view close to the one entertained here; only I think that it overemphasizes the
syntactical function of the operators. I do not think logical operators should
be seen as merely syntactic devices; hence I prefer to see them as marking
certain structural features of inferential structure(s). This is very much of
a piece with the view of the nature of logic put forward above: we tend
to shape the frameworks of our linguistic utterances (i.e. our languages)
into certain kinds of structures and we use logical vocabulary to refer to
certain distinguished vertices of the structures. For example, we can say that
classical as well as intuitionist conjunction refers to an inferential infimum
of two statements: the conjunction of A and B is a statement from which
both A and B are inferable and which is, moreover, the maximal statement
with this property: if any other statement entails both A and B, then it
must entail also their conjunction.

A theory of logical operators based on these ideas was developed by
Koslow [14]. According to him, each operator maps statements on a min-
imum/maximum of a propositional function. Thus, for example, the con-
junction of A and B is the maximal statement C such that

C ` A,
C ` B.

The maximality is understood in such a way that if there is a D satisfying
the same pattern, then

D ` C.

Hence, from this vantage point, logical constants are devices that serve to
refer to extremalities of inferential structures.

What is important is that the whole of this structure need not be explic-
itly articulated in the language in question, i.e. not for every vertice of the
structure must there correspond a statement. The “making it explicit” that
is effected by the logical operators then amounts to revealing the whole of

15There have also been several suggestions to admit only as much of sequent calculus
into natural deduction as to allow us to handle classical logic (see [25], or [17]). I personally
have suggested that we could see classical connectives as established by inferential patterns
if we extend our notion of an inferential pattern (see [22]).
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the structure, which is partly represented by the language in question. Let
us indicate, in greater detail, what this amounts to in the case of a standard
inferential structure.

An inferential structure 〈S, `〉 is called truth-preserving if there exists
a set V of truth-valuations of the set S (i.e. a subset of {0, 1}S) such that
A1,. . . ,An ` A iff v(A)=1 for all such v ∈ V for which v(Ai)=1 for i=1,. . . ,n.
Elsewhere [21] I proved that an inferential structure is truth-preserving iff it
is standard. This to say that if 〈S, `〉 is standard, then it is embeddable into
a Boolean algebra. Let us, conversely, assume that 〈S, `〉 is embeddable
into a Boolean algebra in the sense that there is a function i such that
A1,. . . ,An ` A iff i(A1)∩. . .∩i(An) ⊆ i(A). It is easy to see that this can
be the case only when 〈S, `〉 is standard: hence an inferential structure is
standard iff it is embeddable into a Boolean algebra.

This indicates that there is a sense in which elements of a standard in-
ferential structure do implicitly have their conjunctions, disjunctions etc.
although they do not have them explicitly — if there are no expressions
within the language which would express them. They do have them implic-
itly in the sense that they form a (proto-)structure which can naturally be
extended to a structure in which these elements are present. The “natu-
rally” can also be read as “conservatively”, thus achieving the characteristic
of logical operators put forward by Belnap [2], Hacking [12] and others —
the addition of logical operators adds nothing substantial to the stratum of
language to which it is added, it only institutes a new stratum.

Now, the view of the nature of logic put forward above is that the point
of such a new stratum is in making explicit what is implicit within the
old one. And natural languages appear to have the peculiar tendency to
explicitate themselves in this way: what is first implicit in the behavior
(making inferences) tends to find an explicit expression (in the form of a
statement stating that the inference holds). This is important, for only what
is explicit can be assessed, discussed and possibly also modified or rejected.

12. Substructural logics

What if we suspend the assumption of standardness; i.e. what if we con-
sider inference as a relation which does not necessarily comply with the
Gentzenian rules? Consider, for example, our definition of deductor and
suppose we suspend the structural metarule (CON). Then, instead of the
axiom (.2), we will reach the weaker

(.2*) ` A.A
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The resulting axioms (.1) + (.2*) + (.3) determine the implication of
what is sometimes called the BCK logic (see, e.g., [5]), and also what con-
stitutes the purely implicative part of Wajsberg’s [36] axiomatization of
ÃLukasiewicz’s [16] three-valued calculus. As for the amalgamator, it will
no longer yield classical conjunction (for (ECN1) + (ECN2) will no longer
yield (AMLG)).

Suppose now that we further suspend (EXT). In this setting, (ICN) will
still be equivalent to (DEAMLG), but (ECN1) + (ECN2) and (AMLG) will
be independent of each other (which means that not only will (ECN1) +
(ECN2) not yield (AMLG), but neither vice versa). However, the concept
of amalgamator will coincide with what has come to be called fussion within
the theory of substructural logics [26]:

(IF) X ` A Y ` B
X,Y ` A⊗B (EF) X ` A⊗B Y,A,B,Z ` C

Y,X,Z ` C

(The proof is straightforward.) The axioms appropriate for the deductor
within this framework will then be

` A.A;
` (A.(B.C )).(B.(A.C ))
` (C.A).((A.B).(C.B));

Note that the set of statements together with ⊗ form a semigroup which can
be represented in terms of a set of updates (functions on a set of ‘states’)16.

In general, we can say that the basic delimitations of the inferentially
native operators interact with those structural rules that are in force to
produce various kinds of concrete operators. It is only within the standard
and single-conclusion framework that they yield the intuitionist variety of
operators; within a framework that is substructural, or that allows for other
than single-conclusion inferences, things may be very different.

From the vantage point of the previous sections we can depict the ten-
dency of natural language to ‘swallow up its meta’ as the tendency of the
corresponding inferential structure to ‘unfold’ into a ‘limit structure’, which
is (partly) determined by the structural rules which are in force. (The re-
maining part of the determination is then supplied by the possibilities of the
extension, which are a matter of the general form of the rules available within
the calculus — single-conclusion, multiple conclusion, . . . ). Thus, a stan-
dard inferential structure within the single-conclusion calculus extends to a
Heyting algebra, whereas within the multiple-conclusion calculus it extends
to a Boolean algebra.

16See [35], Chapter 7, and [22].
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Such, then, is an algebraic interpretation of the thesis that logical con-
stants arise from the tendency of speakers to explicitate the rules implicit
in their linguistic conduct: the space of algebraic structures contains certain
‘attractors’ which exert a pull on inferential (proto-)structures, in that the
algebraic structures tend to extend themselves into them.

13. Conclusion

In so far as we take logical operators as tools of making inference explicit
(which we must do if what we are after is the logic of inference; but what
I think we should do in general), we are likely to conclude that the most
natural logical operators are the intuitionist ones; hence in this sense we can
say that intuitionist logic is the logic of inference.

However, this conclusion requires an important qualification. In partic-
ular, it presupposes that inference is, by its nature, single-conclusion and
complies with Gentzenian structural rules. (I think there are reasons to be-
lieve this, but discussing them is not within the scope of the present technical
paper.) If we reject this presupposition, the situation changes: for example,
classical logic may well be seen as the logic of standard multi-conclusion
inference.
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