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LOGIC AS "MAKING IT EXPLICIT" 
Jaroslav Peregrin 
 
 
Logical operators in the inferentialist perspective 
 
In considering the very possibility of deviant logic, we face the following question: what 
makes us see an operator of one logical system as a deviant version of an operator of another 
system? Why not see it simply as a different operator? Why do we see, say, intuitionist 
implication as an operator 'competing' with classical implication? Is it only because both 
happen to be called implications?1 
 It is clear that if we want to make cross-systemic comparisons, we need an 'Archimedean 
point' external to the systems compared. Some logicians and philosophers, including Quine 
(1986), come close to saying that no such Archimedean point is available, and hence that 
there can be no deviant logics, for if two operators are governed by different axioms, then 
they are simply two different operators (or, if you prefer, operators with different meanings). 
From this viewpoint, intuitionist implication is no less different from classical implication 
than, say, intuitionist or classical conjunction. 
 This conclusion is indeed plausible if we consider logical calculi simply as algebraic 
structures2; however, things are different if we see them as a means of accounting for 
something that is already 'there' before we establish the structures and is to be explicated by 
them. From such a perspective, two operators of different systems may be variants of the 
same operator in virtue of the fact that they are both means of capturing the same pre-
theoretical item.  
 What might these items be? Sometimes it seems that logicians tacitly assume that there are 
some mythical archetypes of implication, conjunction etc., located somewhere in some 
Platonic heaven or somehow underlying the a priori structures of our mind, which logic tries 
to capture (for better or worse). However, when it comes to the comparison of the concrete 
outcomes of our logical efforts, say the classical and the intuitionist implications with the 
archetypal Implication, the latter can never be materialized so distinctly as to be of any help. 
 A more constructive proposal is that the operators are related to elements or constructions 
of our language. For example, both intuitionist and classical implication can be seen as means 
of reconstructing the natural language connective "if ... then ...". Clearly, the properties of 
classical implication far from totally coincide with those of "if ... then ..." (as far as this is 
possible to judge at all, because of the notorious vagueness of the latter). Hence should we say 
that classical implication is a modification of "if ... then ...", or rather that it is something 
different which replaces it? 
 It is also possible, of course, to say that operators are devised to capture some pre-
conceived semantic items, such as truth-functions or Boolean operators over sets of possible 
worlds. However, this would turn logic into pure mathematics, which it is surely not -- logic is 
                                                 
1 See Haack (1996) for a thorough discussion of these questions. 
2 It seems that even so there might be a way of accommodating the intuition that two operators of two 
different systems are two variations on a single theme -- if we had a way to judge relative similarity of 
structures and consequent relative similarity of places (or roles) within the structures. Intuitively, this 
should be possible, but I know of no feasible development of this idea. 
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something essentially related to the ways we actually argue, justify and prove, and is to aid us 
with classifying the arguments, proofs etc. as right or wrong. 
   Here I would like to consider a possibility inspired by Bob Brandom's (1994; 2000) notion 
of logic as a means of "making it explicit". According to Brandom, what underlies both 
human language and logic are inferences. Human language is structured in such a way that 
commitments to some claims bring about commitments to other claims -- i.e. that the former 
ones entail the latter ones and hence the latter are correctly inferable from the former. In fact, 
Brandom claims that there is a still deeper layer constituted by the concept of incompatibility. 
   Brandom also claims that what we see as logical vocabulary is first and foremost a means of 
making explicit the proprieties implicit in our using language. Before we have "if ... then", the 
inference from "This is a dog" to "This is a mammal" can only be implicitly endorsed (or, as 
the case may be, violated), but once this connective is at hand, this inference can be explicitly 
expressed in the form of a claim, viz. "If this is a dog, then this is a mammal" (and with a 
more advanced logical vocabulary perhaps further transformed into "Every dog is a 
mammal"), and hence discussed w.r.t. its 'appropriateness' (and perhaps in the end rejected). 
Thus logical vocabulary helps us make the rules that are intractably implicit in our practices 
explicit and discussable3. 
 Hence in this paper I would like to look at the usual logical operators as a means of 
explicitating inferential structure. I will claim that the need of such an explicitation leads to a 
set of 'inferentially native' operators, which, within various logical systems, can mutate into 
various forms. 
 
 
Historical remarks 
 
It is instructive to see how logical constants were understood in some of the classics of 
modern logic and analytic philosophy. Thus, introducing his conditional sign, Frege (1879, 
p.5) writes 
 

Wenn A und B beurtheilbare Inhalte bedeuten, so gibt es folgende vier Möglichkeiten: 
 1) A wird bejaht und B wird bejaht; 
 2) A wird bejaht und B wird verneint; 
 3) A wird verneint und B wird bejaht; 
 4) A wird verneint und B wird verneint.  
 
 ▐─┬─ A 
 └─ B 
 

                                                 
3 Of course that as Brandom's proposal is not utterly unprecedential -- seeing connectives as means of 
articulating facts about inferability is to a certain extent common within some proof-theoretic 
approaches to logic, especially within the Gernan constructivistic tradition (Lorenzen and 
Schwemmer, 1975). 
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bedeutet nun das Urtheil, dass die dritte dieser Möglichkeiten nicht stattfinde, sondern 
eine der drei andern.4 

 
This indicates that the sign Frege defines, and the natural language "if ... then" which it is 
clearly supposed to 'regiment', has a metalinguistic content: it expresses a fact about its 
content clauses being asserted and/or denied. 

The situation is similar in respect to quantifiers. Frege (ibid., p.19) writes 
 

In dem Ausdrucke eines Urtheils kann man die rechts von ▐── stehende Verbindung 
von Zeichen immer als Funktion eines der darin vorkommenden Zeichen ansehen. Setzt 
man an die Stelle dieses Argumentes einen deutschen Buchstaben, und giebt man dem 
Inhaltsstriche eine Höhlung, in der dieser selbe Buchstabe steht, wie in  
 

▐─∪a─Φ(a) 
 
so bedeutet dies das Urtheil, daß jene Function eine Thatsache sei, was man auch als 
ihr argument ansehen möge.5 

 
In this way, a quantified sentence is not a 'regimentation' of a sentence of the object language, 
but rather again a shortcut for a metalinguistic statement: a statement about the results of 
replacing a part of an object language sentence by various (suitable) expressions. Hence to say 
that some object-language expressions, such as "something" or "everything", can be 
regimented by such quantifiers, is to say that these expressions are means of 'internalizing' 
certain metalinguistic pronouncements. 

Russell (1905, p. 480) takes, in this respect, a very close train of thought: 
 
... everything and nothing and something (...) are to be interpreted as follows:  

C(everything) means 'C(x) is always true';  
C(nothing) means '"C(x) is false'' is always true';  
C(something) means 'It is false that "C(x) is false'' is always true.'  

 

                                                 
4 "If A and B stand for contents that can become judgments, there are the following four possibilities: 
(1) A is affirmed and B is affirmed; (2) A is affirmed and B is denied; (3) A is denied and B is affirmed; 
(4) A is denied and B is denied. Now  

 ▐─┬─ A 
 └─ B 

stands for the judgment that the third of these possibilities does not take place, but one of the three 
others does." 
5 "In the expression for a judgement, the complex symbol to the right of ├─ may always be regarded as 
a function of one of the symbols that occur in it. Let us replace this argument with a Gothic letter, and 
insert a concavity in the content-stroke, and make this same Gothic letter stand over the concavity, 
e.g.:  

▐─∪a─Φ(a) 
This signifies the judgement that the function is a fact whatever we take its argument to be." 
(Elsewhere I have discussed the consequences of this Fregean notion of quantification for the concept 
of variable -- see Peregrin, 2000.) 
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Hence again, sentences with "everything", "nothing" etc. are taken to express metalinguistic 
pronouncements; and their presence in a language thus enables us to say in the language what 
holds about the language and what is otherwise only expressible within a metalanguage.  
 
 
'Inferentially native' operators 
 
Suppose we have an inferentially structured language, i.e. a set S of sentences with a relation 
├─ which is a relation between finite sequences of elements of S and elements of S. Hence  
 
 A1,...,An ├─ A. 
 
means that the statement A is (correctly) inferable from the sequence A1,...,An of statements. 
We will employ the letters A, A1, ..., An, B, C ..., to stand for statements, whereas X, Y, Z, ... to 
stand for finite sequences thereof. 
 What would it take to make an inference, such as 
 
 A ├─ B, 
 
explicit in the structure? We would need a statement which says that B is inferable from A. 
But what does it take for a statement of such a structure to say this? Presumably to be true iff 
B is inferable from A. But the relation ├─ is unchanging and hence the explicitating claim 
would be true necessarily; and what is the closest approximation to necessary truth within the 
structure is clearly inferability from nothing.  
 Let us assume that we have a function, call it d (for deductor), mapping pairs of statements 
on statements in such a way that 
 
 (*) A ├─ B iff ├─ d(A,B). 
 
In this way, to claim d(A,B) (as a necessary truth) would be to claim that B is inferable from 
A. Splitting (*) into its two halves and using "/" as a shorthand for "only if" we have  
 
 DED: A ├─ B / ├─ d(A,B) 
 CODED: ├─ d(A,B) / A ├─ B 
 
However, d allows us to say that a statement is inferable from another statement, but not yet 
that it is inferable from a sequence of statements. To achieve this, we would need either a way 
to amalgamate a sequence of statements into a single statement, or, alternatively, a deductor 
which would be applicable recursively. 
 The former way amounts to a function a (for amalgamator) such that  
 
 X,A,B,Y ├─ C iff  X,a(A,B),Y ├─ C,  
 
or split into the two halves 
 
 AMLG: X,A,B,Y ├─ C / X,a(A,B),Y ├─ C 
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 DEAMLG: X,a(A,B),Y ├─ C / X,A,B,Y├─ C. 
 
The latter way amounts to strengthening the condition (*) to 
 
 (**) X,A ├─ B iff X├─ d(A,B), 
 
i.e. 
 
 DED*: X,A ├─ B / X├─ d(A,B) 
 CODED*: X├─ d(A,B) / X,A ├─ B. 
 
Hence from the viewpoint of explicitating the relation ├─ we may think of two 'native 
operators', d and a. 
 However, according to Brandom, the relation of inference rests on a more primitive 
concept, namely that of incompatibility: to say that A is correctly inferable from X is to say 
that whatever is incompatible with A is incompatible with X. Hence if we denote the fact that 
the sequence X is incompatible as 
 
 ⊥ X, 
 
we can write 
 
 X ├─ A iff for every Y and Z it is the case that if ⊥ Y,A,Z then ⊥ Y,X,Z. 
 
From the other side, the best approximation of incompatibility achievable once we work with 
inference only is in terms of the "ex falso quodlibet" rule, hence 
 
 ⊥ X iff for every A, X ├─ A. 
 
Anyway, what we might also need is to explicitate the relation of incompatibility. Let us 
consider a unary function c (for complementator) such that 
 
 ⊥ A iff ├─ c(A). 
 
However, this again allows us merely to say that a statement is incompatible, whereas we 
would want to be able to say, more generally, that a sequence of statements is. This could be 
done if we were able not only to express that a statement is incompatible, ⊥ A, but also that a 
statement is incompatible with a sequence X, i.e. ⊥  X,A. So what we may want is to generalize 
the stipulation that A is incompatible iff c(A) is inferable (from nothing) to the stipulation that 
A is incompatible with X iff c(A) is inferable from X. Hence we have  
 
 ⊥  X,A iff X ├─ c(A), 
 
i.e. 
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 COMP: ⊥  X,A / X ├─ c(A), 
 DECOMP: X ├─ c(A) / ⊥  X,A. 
 
If we emulate incompatibility in terms of inference, we have 
 
 COMP*: X,A├─ B for every B / X ├─ c(A), 
 DECOMP*: X ├─ c(A) / X,A├─ B for every B. 
 
Hence it seems that we can think of at least three kinds of 'inferentially native' operators: 
deductors, amalgamators and complementators. Our goal now is to see to what extent the 
usual operators of the common logical calculi can be seen as their embodiments. 
 
 
Theories and provability 
 
Logic reconstructs what our knowledge tends to result into as theories. A theory T (such as 
the Peano arithmetic, PA) can be seen simply as a set of sentences of a language. But it seems 
that if a theory is to be producible, learnable and manageable by us, finite human beings, then 
it must somehow be 'given by finite means'. The standard way is to see it as generated from a 
finite set A of axioms. (Thus, PA is seen as based on the axioms of first-order logic and the 
well-known extralogic axioms.) Hence we assume 
 
 T = Cn(A), 
 
where Cn is a way of getting T from A. What, more concretely, is Cn? It is a function 
mapping sets of statements on the sets of their consequences (intensively studied especially by 
Tarski, 1930 and elsewhere). It is usually seen as induced by a relation between finite 
sequences (or sets) of statements and statements. Hence, to be more precise we should write 
 
 T = CnI(A), 
 
where I is a relation between finite sequences of statements and statements and  
 
 CnI(A) = {s | <X,s>∈ I for some finite sequence X of statements from A}. 
 
Now the trouble with I, if construed in this way, is that it suffers from the same shortage as 
the original A: namely it is an infinite set (of ordered pairs). Hence we may try to repeat the 
same move as before, namely to construe it as generated from a finite collection of 'axioms'. 
 An ordered pair consisting of a finite set of statements and a statement will be called an  
inference; and an inference relation will be a set of inferences. Thus, our I is an inference 
relation. Now we assume that  
 
 I = CnI'(R), 
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where R is a finite set of 'inferential rules' (for PA, for example, it consists of modus ponens 
and generalization). However, at this point we face the question of the nature of our I' (and 
we may begin to worry whether we have not started an infinite regress). 
 The standard solution would run as follows: I is the relation which holds between a 
sequence of statements X and a statement S just in case we can prove S from X using the 
inferential rules from R. This is to say that I holds between X and A iff there is a finite 
sequence of statements ending with A and such that each of its elements is either an element 
of X or there is a rule from R which allows us to derive the statement from statements 
occurring earlier in the sequence. And hence CnI' is the functor which takes us from a given R 
to the relation of 'provability by means of R'.  
 Can we make the nature of I' explicit? Yes, indeed. It is easy to see that a relation ├─ of 
provability by means of a given collection of rules satisfies the Gentzenian structural rules: 
 
 (REF) A├─ A 
 (EXT) X,Y├─ B / X,A,Y├─ B 
 (CON) X,A,A,Y├─ B / X,A,Y├─ B 
 (PERM) X,A,B,Y├─ C / X,B,A,Y├─ C 
 (CUT) X├─ A; Y,A,Z├─ B / Y,X,Z├─ B 

 
More importantly, it is precisely the closure of R w.r.t. these rules that amounts to the relation 
of 'provability by means of R'6. For let A be provable from X by means of the rules of R. Then 
there is a sequence A1,...,An of statements such that An = A and every Ai is either an element of 
X or is inferable by a rule of R from statements which are among A1,...,Ai-1. If n=1, then there 
are two possibilities: either A∈ X and then X├─ A in force of REF and EXT; or A is a 
consequent of a rule of R with a void antecedent, and then ├─ A and hence X├─ A in force of 
EXT. If n>1 and An  is inferable from some Ai1,...,Aim  (where i1<n,..., im<n) by a rule from R, 
then Ai1,...,Aim ├─ A, where X├─ Aij for j=1,...,m. Then X,...,X ├─ A in force of CUT, and 
hence X ├─ A in force of PERM and CON. 
 
 
Inferential structures 
 
To be able to address the explicitation of inference more rigorously, we need to establish a 
more rigorous framework. Hence the following definitions: 
 Let S be a set ('of statements'). An inference over S is an ordered pair whose first 
constituent is a finite sequence of elements of S and whose second is an element of S. A 
metainference over S is an ordered pair whose first constituent is a finite sequence of 
inferences over S and whose second is an inference over S. If P is a set ('of parameters'), then 
a (P-)inferential pattern over S is an inference over S in which some elements of S are 
replaced by elements of P. An instance of an inferential pattern over S is any inference over S 
                                                 
6 Note that if we start investigating substructural logics, thereby denying that I' is bound to be of this 
kind, we are on the verge of the infinite regress hinted at above. If I' be arbitrary, then we should at 
least require that it be 'finitely based'. i.e. that I' = CnI′ '(R') for some I'' and R'. The natural thing would 
be to take I'' as constituted by the Gentzenian rules, but if we rejected this for I', it seems we might as 
well reject it for I'' ... 
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which can be obtained from the pattern by a systematic replacement of the elements of P by 
elements of S. A (P-)metainferential pattern over S is a metainference over S with some 
elements of S in its constituents replaced by those of P. An instance of a metainferential 
pattern over S is any metainference over S which can be obtained from the pattern by a 
systematic replacement of the elements of P by elements of S. 
 An inferential structure is the ordered triple F = <S,I,M>, where S is a set, I is a finite set 
of inferential patterns over S, and M is a finite set of metainferential patterns over S. The 
notion of inference valid in F is defined in the following obvious recursive way: 
 
 (i) an instance of an inferential pattern from I is valid; 
 (ii) if <<I1,..., In>,I> is an instance of a metainferential pattern from M and all of I1,..., In are 
valid, then so is I; 
 (iii) nothing else is an inference valid in F. 
 
If <X,A> is an inference valid in F, then we shall write X ├─F A. Hence in terms of the 
notation of the previous section, 
 
 ├─F ≡Def. CnM(I). 
 
We will leave out the subscript accompanying ├─ where no confusion would be likely to 
arise. We will say that A is a theorem of F if <<>,A>, where <> is the empty sequence, is an 
inference valid in F. 
 We will say that an inferential structure is standard if I contains the pattern 
 
 (REF) A ├─ A     
 
and M consists of the metapatterns 
 
 (EXT) X,Y ├─ A / X,B,Y ├─ A 
 (CON) X,A,A,Y ├─ B / X,A,Y ├─ B 
 (PERM) X,A,B,Y ├─ C / X,B,A,Y ├─ C  
 (CUT) X,A,Y ├─ B; Z├─ A / X,Z,Y ├─ B 
 
We will say that it is substandard if M consists of a subset of these patterns. 
 As we saw in the previous section, standard structures are important in that they explicate 
the intuitive notion of 'provability by means of a collection of rules'. Now an addition of an 
operator to a standard inferential structure is to consist in the addition to the structure of some 
inferential patterns characteristic of the operator. Hence our next task is to try to turn the 
metainferential patterns we used to characterize our native operators into inferential ones.  
 
 
Deductor 
 
Let us start with the deductor. It is easily seen that CODED* is equivalent to the modus 
ponens inferential pattern 
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 MP: d(A,B),A ├─ B.  
 
The proof is as follows (we underline the structural rules employed within the proofs to 
emphasize on which of them the individual results depend): 
 
 CODED* ⇒  MP 
 1. d(A,B)├─ d(A,B)   REF 
 2. d(A,B),A ├─ B    from 1 by CODED* 
 
 MP ⇒  CODED* 
 1. X├─ d(A,B)    assumption 
 2. d(A,B),A ├─ B    MP 
 3. X,A ├─ B    from 1 and 2 by CUT 
 
However, things are not that easy with DED*: there does not appear to be an inferential 
pattern which would be equivalent to it. But there is an indirect way of securing its validity by 
establishing inferential patterns: The point is that a way of making DED* valid is to stipulate 
its validity for the instances of I and to secure that the validity is preserved by all the instances 
of M. If X is A1,...,An, then let us write d(X,B) as a shorthand for d(A1, d(A2, ..., d(An,B))); if X 
is the concatenation of the sequences Y and Z, then d(Y,Z,B) will mean d(X,B); and let us 
interpret d(X,B) as B if X is the empty sequence. Then what is necessary and sufficient for 
REF, EXT, CON, PERM and CUT to preserve the validity of DED* is obviously the 
following: 
 
 (1)├─ d(A,A) 
 (2)├─ d(X,Y,B) / ├─ d(X,A,Y,B) 
 (3)├─ d(X,A,A,Y,B) / ├─ d(X,A,Y,B) 
 (4)├─ d(X,A,B,Y,C) / ├─ d(X,B,A,Y,C) 
 (5)├─ d(X,A); ├─ d(Y,A,Z,B) / ├─ d(Y,X,Z,B) 

 
Given (4), we can reduce (2), (3) and (5) to the simpler (2'), (3') and (5'): 
 
 (2') if ├─ B, then ├─ d(A,B) 
 (3') if ├─ d(A,A,B), then ├─ d(A,B) 
 (5') if ├─ d(X,A) and ├─ d(A,B), then ├─ d(X,B) 

 
However, (2'), (3'), (5') as well as (4) are still metapatterns; so we are as yet no better than 
with DED* itself. Nevertheless in contrast to DED*, the validity of these metapatterns can be 
obviously established by stipulating the patterns 
 
 (2'') B├─ d(A,B) 
 (3'') d(A,A,B)├─ d(A,B) 
 (4')  d(X,A,B,Y,C)├─ d(X,B,A,Y,C) 
 (5'') d(X,A), d(A,B)├─ d(X,B) 

 
and hence by  
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 (2*) ├─ d(B,d(A,B)) 
 (3*) ├─ d(d(A,A,B),d(A,B)) 
 (4*) ├─ d(d(X,A,B,Y,C),d(X,B,A,Y,C)) 
 (5*) ├─ d(d(X,A),d(d(A,B),d(X,B))) 

 
Now it can easily be shown that (4*) can be reduced to (4**), whereas (5*) to (5**): 
 
 (4**) ├─ d(d(A,B,C),d(B,A,C)) 
 (5**) ├─ d(d(C,A),d(d(A,B),d(C,B))) 

 
and that (1) and (4**) then follow from (2*), (3*) and (5**). 
 In this way we reach the axiomatization of what Hilbert and Bernays (1939, Supplement 
III) called positive logic and which constitutes the implicative part of the intuitionist 
propositional calculus. It is this system which thus appears to constitute the 'native standard 
logic of implication'. (The purely implicative axioms of the classical propositional calculus 
are the same, but as the addition of the classical axiom(s) for negation are not conservative 
over them, the class of purely implicative theorems of the classical propositional calculus is 
more inclusive.) 
 Now assume that we are interested not in standard, but in some substandard kinds of 
systems. Suppose we suspend one of the structural rules, say CON. As the result, we will have 
only 
 
 ├─ d(A,A) 
 ├─ d(B,d(A,B)) 
 ├─ d(d(C,A),d(d(A,B),d(C,B))) 

 
In this way we reach the implication of what is sometimes called BCK logic7, and also what 
constitutes the purely implicative part of Wajsberg's (1931) axiomatization of Łukasiewicz's 
(1930) three-valued calculus. 
 Suppose we leave only REF and CUT and suspend all the other structural rules. Then MP 
still replaces CODED*; and we only have to strike out those of (1)-(5) which correspond to 
the suspended rules. If we suspend all save REF and CUT, we have 
 
 ├─ d(A,A) 
 d(X,A), d(Y,A,Z,B),├─ d(Y,X,Z,B) 

 
 
Amalgamator 
 
Now let us consider the amalgamator -- it is not difficult to see that within a standard 
inferential structure, AMLG becomes equivalent to ICN whereas DEAMLG to ECN1 plus 
ECN2: 
 
                                                 
7 See, e.g., Došen (1993). 
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 ICN: A,B ├─ a(A,B) 
 ECN1: a(A,B) ├─ A 
 ECN2: a(A,B) ├─ B 
 
This can be proved as follows: 
 

DEAMLG ⇒  ICN 
1. a(A,B)├─ a(A,B)   REF 
2. A,B├─ a(A,B)    from 1 by DEAMLG 
 
ICN ⇒  DEAMLG 
1. X,a(A,B),Y ├─ C   assumption 
2. A,B├─ a(A,B)    ICN 
3. X,A,B,Y ├─ C    from 2 and 1 by CUT 
 
ECN ⇒  AMLG 
1. X,A,B,Y ├─ C    assumption 
2. a(A,B)├─ A    ECN1 
3. a(A,B)├─ B    ECN2 
4. X,a(A,B),a(A,B),Y ├─ C  from 1, 2 and 3 by CUT 
5. X,a(A,B),Y ├─ C   from 4 by CON 
   
AMLG ⇒  ECN1  
1. A├─ A     REF 
2. A,B├─ A    from 1 by EXT 
3. a(A,B)├─ A    from 2 by AMLG 

 (the proof of AMLG ⇒  ECN2 is analogous) 
 
 Now if we have also the deductor, we have a way of making all inferential patterns, with 
the exception of modus ponens, explicit, i.e. of reducing them to axioms. (And, in fact, we 
must do so in order to keep DED* valid.) As for the ones constitutive of the amalgamator, i.e. 
ICN, ECN1 and ECN2, they are transformed into 
 
 ├─ d(A,d(B,a(A,B))) 
 ├─ d(a(A,B),A) 
 ├─ d(a(A,B),B) 
 
 What about nonstandard structures? If we suspend any structural rule other than PERM, 
the equivalence between AMLG+DEAMLG and ICN+ECN1+ECN2 will fail. However, as 
long as REF and CUT hold, the concept of amalgamator will coincide with what has come to 
be called fussion within the theory of substructural logics (Restall, 2000): 
 
 IF: X├─ A; Y├─ B / X,Y├─ a(A,B) 
 EF: X├─ a(A,B); Y,A,B,Z ├─ C / Y,X,Z├─ C 
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 The proofs of the equivalence to the definition of amalgamator are as follows: 
 

DEAMLG ⇒  IF 
1. a(A,B)├─ a(A,B)   REF 
2 A,B├─ a(A,B)    from 1 by DEAMLG 
3. X├─ A     assumption 
4. Y├─B     assumption 
5. X,Y├─ a(A,B)    from 3, 4, and 1 by CUT 
 
AMLG ⇒  EF 
1. X├─ a(A,B)    assumption  
2. Y,A,B,Z ├─ C    assumption 
3. Y,a(A,B),Z ├─ C   from 2 by AMLG 
4. Y,X,Z ├─ C    from 1 and 3 by CUT 
 
EF ⇒  AMLG  
1. X,A,B,Y ├─ C    assumption 
2. a(A,B)├─ a(A,B)   REF 
3. X,a(A,B),Y ├─ C   from 2 and 1 by EF 
 
IF ⇒  DEAMLG 
1. X,a(A,B),Y ├─ C   assumption 
2. A├─ A     REF 
3. B├─ B     REF 
4. A,B ├─ a(A,B)    from 2 and 3 by IF 
5. X,A,B,Y ├─ C    from 4 and 1 by CUT 

 
 
Complementator 
 
The situation is more complicated with the complementator, whose definition given by 
COMP* and DECOMP* cannot be turned into axioms so straightforwardly. However, we can 
reduce DECOMP* to 
 
 (DECOMP**) c(A), A ├─ B: 
 
The proof is as follows: 
 

DECOMP** ⇒  DECOMP* 
1. X ├─ c(A)    assumption 
2. X,A├─ B    from 1 and DECOMP** by CUT 

 
DECOMP* ⇒  DECOMP** 
1. c(A) ├─ c(A)    REF 
2. c(A), A ├─ B    from 1 by DECOMP* 
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Moreover, in the presence of a deductor, we can reduce COMP* to: 
 
 (COMP**) d(A,B), d(A,c(B)) ├─ c(A) 

 
This can be proven in the following way: 

 

COMP** ⇒  COMP* 
1. X,A├─ B    from the assumption 
2. X├─ d(A,B)    from 1 by DED* 
3. X,A├─ c(B)    from the assumption 
4. X├─ d(A,c(B))    from 3 by DED* 
5. X,X ├─ c(A)    from 1, 3 and  COMP** by CUT 
4. X ├─ c(A)    from 5 by PERM and CON 

   
COMP* ⇒  COMP** 
1. d(A,B),A ├─ B    MP 
2. d(A,c(B)),A ├─ c(B)   MP 
3. d(A,c(B)),A, d(A,B),A ├─ C  from 1, 2 and DECOMP** by CUT 
4. d(A,B), d(A,c(B)),A ├─ C  from 3 by PERM and CON 
5. d(A,B), d(A,c(B)) ├─ c(A)  form 4 by COMP* 

 
Now with the help of the deductor, we recast DECOMP** and COMP** as 
 
 ├─ d(c(A),d(A,B)) 
 ├─ d(d(A,B),d(d(A,c(B)),c(A))) 

 
 

Conclusion 
 
Let us summarize the inferences we have amassed in trying to make the (standard) inference 
relation explicit: 
 
 A,d(A,B))├─ B 
 ├─ d(B,d(A,B)) 
 ├─ d(d(A,A,B),d(A,B)) 
 ├─ d(d(C,A),d(d(A,B),d(C,B))) 

 ├─ d(A,d(B,a(A,B))) 
 ├─ d(a(A,B),A) 
 ├─ d(a(A,B),B) 
 ├─ d(c(A),d(A,B)) 
 ├─ d(d(A,B),d(d(A,c(B)),c(A))) 

 
It is easy to see that they make up an axiomatization of the intuitionist propositional calculus. 
This indicates that w.r.t. standard inferential structures, it is intuitionist logic which is the 
logic of inference.  
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 What about classical logic? As is well known, it can be derived from intuitionist logic by 
the addition of an axiom which, in our notation, reads 
 
 ├─ d(c(c(A)),A) 
 
Is there an inferentialist substantiation of this axiom? I do not see one (which, of course, does 
not mean that none exists8). However, this axiom appears to provide for an 'alignment' of the 
intuitionist calculus, which leads to a considerable simplification. 
 What about other logical systems? We have seen that for them, deductors, amalgamators 
and complementators may be embodied in operators of different kinds than are those of 
classical ones. (From our viewpoint, if the deduction theorem for a calculus fails, then the 
upshot is that the implication of the calculus is not its appropriate deductor -- for deduction is 
a constitutive feature of the deductor.) 
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